Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Abstract

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines. To fill the gap on this subject, this work focused on changes in color, phenolic and volatile composition of red wines treated for 7 days with 0.5 g/L of fungoid chitosan, added in both undissolved and dissolved form. When compared to untreated samples, minor changes in phenolic compounds were observed in chitosan added wines, mainly involving hydroxycinnamic acids and flavonols, with reductions of 3 mg/L and 1.5 mg/L respectively. Ellagic acid, however, was absorbed up to 2 mg/L, which reduced his content by 40%. Since some of these compounds actively participate to co-pigmentation with anthocyanins, the color of wines was influenced accordingly. Chitosan marginally absorbed some aroma compounds, including ethyl esters and volatile phenols whose amounts were slightly but significantly decreased after treatment. Visual and olfactive comparison of samples confirmed that, at the dose adopted, chitosan is suitable to be used in red winemaking for microbial or physical stability purposes, not severely impairing the quality parameters of the final wines.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Antonio Castro Marin, Fabio Chinnici

Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 40, 40127

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1]. The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

Time stability of visitors’ preferences for preserving the worldwide cultural landscape alto douro wine region

The Alto Douro Wine Region (ADWR) was classified a world heritage site, specifically as a cultural landscape, by UNESCO, in 2001. The well known “Porto Wine” and other high quality wines are produced in the Douro region. As an attraction and touristic site, the cultural site has to meet the needs of more demanding visitors and to compete with a growing number of cultural sites, also classified by UNESCO. To achieve this goal, landscape managers and public authorities have much to profit from knowing and understanding visitors’ preferences regarding the attributes associated to its outstanding universal value.

SENSORY PROPERTIES IMPORTANT TO AUSTRALIAN FINE WINE CONSUMER SEGMENT PERCEPTION OF CHARDONNAY WINE COMPLEXITY AND PREFERENCE

Wine complexity is considered a multidimensional yet equivocal sensory percept. This project uncovered sensory attributes Australian Chardonnay wine consumers associate with Chardonnay wine complexity
and correlations between expert and consumer perceived wine complexity and preference. A
wine consumer test examined 6 Australian Chardonnay wines of three complexity levels designated low (LC1&2), medium (MC1&2), and high (HC1&2) by an expert panel (n = 8) using a benchtop sensory task. Consumers (n = 81) rated their perceived liking using a 9-point hedonic scale; wine complexity with a 5-point scale anchored “low”, “low-medium”, “medium”, “medium-high”, and “high” and lastly, profiled the wines using Rate-All-That-Apply (RATA). Psychographic segmentation with the Fine Wine Instrument
(FWI) generated three segments; Wine Enthusiasts (WE n=29), Aspirants (ASP n=40) and No- Frills (NF n=12).

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Saccharomyces cerevisiae – Oenococcus oeni – Lactiplantibacillus plantarum: focus on malolactic fermentation during production of Catarratto and Riesling white wines

The increasing interest in enhancing groundbreaking sensory profile of wines determined the need to select novel strains of lactic acid bacteria (LAB). Metabolic processes characterizing malolactic fermentation (MLF) lead to the production of several organic compounds that significantly impact the oenological and sensory characteristics of wines.