Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

Abstract

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose. Seven tannins with different botanical origin were studied by determining the polyphenolic content (Folin-Ciocalteau assay, GAE%; Total Polyphenols Index, TPI%; Phloroglucinolysis, CT%), antiradical activity (DPPH), reducing capacity (FRAP), redox properties (Linear Sweep Voltammetry, LSV). The OCR was measured with a noninvasive luminescence-based technology in an oxygen saturated model wine solution, containing transition metals and metabisulphite to better simulate the oxidative conditions. The results showed a high variability in polyphenolic content due to the botanical origin of tannins. The OCR determined over 21 days was described by quadratic equations, with coefficients varying with the dose and botanical origin of tannins and with SO2 concentration. The tannins ranked differently for antioxidant capacity, depending on the kind of test. The OCR was correlated with the LSV and FRAP indexes. The Factor Analysis of data distinguished three causes of variability between tannins (3 Factors) and the analytical parameters describing them: 1) the richness in polyphenols (First Factor, explaining the 34.02% of the total data variability), described by GAE%, TPI%, DPPH; 2) the tannin typology (Second Factor, 27.4%), described by LSV and CT%; 3) the oxygen consumption rate (Third Factor, 30.00%), described by OCR, LSV, FRAP.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Silvia Mottaa, Massimo Guaitaa, Claudio Cassinob, Antonella Bossoa

a Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
b Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Data integration via modeling for adaptation to climate change and efficiency breeding in grapevine

Climate can greatly affect grape yield and quality (van Leeuwen et al., 2024). Growing suitable cultivars in a given region and or breed environmental resilient cultivars are essential for maintaining viticulture sustainability, particularly in the face of climate change (Wolkovich et al., 2018).

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Caractérisation et valorisation des terroirs de l’appellation d’origine contrôlée Puisseguin-Saint-Emilion

Le terroir viticole, qui est la base de la délimitation des aires d’Appellation d’Origine Contrôlée, est une notion complexe dans laquelle sont en interaction la vigne, les facteurs naturels tels que le sol, le climat, ainsi que le facteur humain à travers les pratiques des viticulteurs. Le terroir conditionne la composition des raisins et ainsi la qualité et la typicité des vins qui en sont issus.

Composition and biological potential of grape and wine phenolic compounds

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins).

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.