Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

Abstract

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose. Seven tannins with different botanical origin were studied by determining the polyphenolic content (Folin-Ciocalteau assay, GAE%; Total Polyphenols Index, TPI%; Phloroglucinolysis, CT%), antiradical activity (DPPH), reducing capacity (FRAP), redox properties (Linear Sweep Voltammetry, LSV). The OCR was measured with a noninvasive luminescence-based technology in an oxygen saturated model wine solution, containing transition metals and metabisulphite to better simulate the oxidative conditions. The results showed a high variability in polyphenolic content due to the botanical origin of tannins. The OCR determined over 21 days was described by quadratic equations, with coefficients varying with the dose and botanical origin of tannins and with SO2 concentration. The tannins ranked differently for antioxidant capacity, depending on the kind of test. The OCR was correlated with the LSV and FRAP indexes. The Factor Analysis of data distinguished three causes of variability between tannins (3 Factors) and the analytical parameters describing them: 1) the richness in polyphenols (First Factor, explaining the 34.02% of the total data variability), described by GAE%, TPI%, DPPH; 2) the tannin typology (Second Factor, 27.4%), described by LSV and CT%; 3) the oxygen consumption rate (Third Factor, 30.00%), described by OCR, LSV, FRAP.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Silvia Mottaa, Massimo Guaitaa, Claudio Cassinob, Antonella Bossoa

a Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria – Centro di Ricerca Viticoltura ed Enologia, via P. Micca 35, 14100 Asti, Italy
b Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Characterization of vineyard sites for quality wine production using meteorological, soil chemical and physical data

The quality of grapevines measured by yield and must density in the northern part of Europe -conditions can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another, i.e. différences in must densities can range from 30 to 50 °Oe. An explanation may be changes of weather conditions during critical developmental stages of the grapevines (2, 3, 5). These can be categorized as “macro climatic” influences.

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

Nucleophilic fraction to estimate the antioxidant activity of inactivated yeast derivates

Oxidation in wine is mostly related to the Michael addition of nucleophiles on two quinones formed from the oxidation of ortho-diphenols. In wine this mechanism is responsible for the increase of the yellow hue and aroma loss. Glutathione exerts its antioxidant activity throughout its competitive addition onto quinones, but many other compounds can have the same behavior: sulfanyl
compounds, amino acids, etc. Addition of yeast derivates during the winemaking process can increase the level of those nucleophilic compounds and then confer to the wine a higher resistance

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.