Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Color stabilization properties of oenological tannins

Color stabilization properties of oenological tannins

Abstract

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging. Consequently, the aim of this work, was to verify/confirm the effectiveness of oenological tannins on wine color stabilization to be applied as a new tool by winemakers. 

To achieved this, a model wine solution containing 50 mg/L of malvidin-3-O-monoglucoside was supplemented with 10, 20 and 40 g/hL of commercial tannins (quebracho, ellagitannin, gallotannin, grape-skin and grape-seed) or (-)-epicatechin used as reference. After 1, 7, 14 and 21 days, the full absorbance spectrum (400-800 nm) was measured to determine the CIELAB coordinates and the copigmentation index (new proposed index based on CIELAB parameters). In parallel, samples were injected in HPLC-MS-QTOF to quantified the malvidin-3-O-monoglucoside and its possible degradation products. 

The obtained results show that malvidin-3-O-glucoside concentration decrease during the time accompanied by the formation of two degradation products. However, malvidin-3-O-glucoside decrease differs according to the added tannins meanwhile degradation product formation is the same for all the tannins. In this way, botanical origin of oenological tannins influences their effectiveness. Indeed, gallotanins and grape tannins are the most efficient to improve color stabilization during ageing by copigmentation and by inducing the formation of new polymerized pigments respectively.

Based on this work, oenological tannins have been authorized by the OIV, to stabilize the color of red wines with the modification of the OENO-TECHNO 612 and 613 sheets. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Vignault A1,2., Gomez-Alonso S3., Jourdes M1., Canals J.M2., Zamora F2., Teissedre  P-L1.

1Université de Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France.
2Departament de Bioquímica i Biotecnología, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain.
3Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, España

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Landscape marketing and landscape reality: what is the relationship? The case of the Loire Valley vineyards

This issue poses two questions: the relationship between beauty and taste (is landscape quality an index of wine quality ?), and the gap or the conformity between our image of the “terroir” and the visible reality. The landscape is both an object and a representation.

El Malvasía en la isla de la Palma

El tema que me corresponde tratar en esta mini conferencia sobre “Caracterización vitivinícola de las Malvasías en Canarias”, es por razones obvias la parte que atañe a la Isla de La Palma.

Metabolomics screening of Vitis sp. interspecific hybrids to select natural ingredients with cosmetic purposes

Introducing natural ingredients using green chemistry practices is a major challenge in cosmetics industry to follow the market trend. Among the plants of cosmetic interest, vine products show a remarkable diversity of natural substances with high potential for the cosmetic and dermatological sectors. To date, research focuses on well-known compounds like E-resveratrol and E-ε-viniferin,

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.