Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Color stabilization properties of oenological tannins

Color stabilization properties of oenological tannins

Abstract

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging. Consequently, the aim of this work, was to verify/confirm the effectiveness of oenological tannins on wine color stabilization to be applied as a new tool by winemakers. 

To achieved this, a model wine solution containing 50 mg/L of malvidin-3-O-monoglucoside was supplemented with 10, 20 and 40 g/hL of commercial tannins (quebracho, ellagitannin, gallotannin, grape-skin and grape-seed) or (-)-epicatechin used as reference. After 1, 7, 14 and 21 days, the full absorbance spectrum (400-800 nm) was measured to determine the CIELAB coordinates and the copigmentation index (new proposed index based on CIELAB parameters). In parallel, samples were injected in HPLC-MS-QTOF to quantified the malvidin-3-O-monoglucoside and its possible degradation products. 

The obtained results show that malvidin-3-O-glucoside concentration decrease during the time accompanied by the formation of two degradation products. However, malvidin-3-O-glucoside decrease differs according to the added tannins meanwhile degradation product formation is the same for all the tannins. In this way, botanical origin of oenological tannins influences their effectiveness. Indeed, gallotanins and grape tannins are the most efficient to improve color stabilization during ageing by copigmentation and by inducing the formation of new polymerized pigments respectively.

Based on this work, oenological tannins have been authorized by the OIV, to stabilize the color of red wines with the modification of the OENO-TECHNO 612 and 613 sheets. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Vignault A1,2., Gomez-Alonso S3., Jourdes M1., Canals J.M2., Zamora F2., Teissedre  P-L1.

1Université de Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, ISVV, 33882 Villenave d’Ornon cedex, France.
2Departament de Bioquímica i Biotecnología, Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain.
3Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, España

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Effect of riboflavin on the longevity of white and rosé wines

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF).

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

Délimitation des terroirs dans les A.O. Rueda et Toro (Castilla y León-Espagne)

La délimitation et la caractérisation des zones viticoles posent en Espagne des problèmes spécifiques non seulement dus aux caractéristiques propres au territoire mais aussi à la dimension, la distribution et l’indice d’occupation viticole dans les appellations d’origine.

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]