Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Alimentary film to reduce cork taint and improve wine organoleptic quality

Alimentary film to reduce cork taint and improve wine organoleptic quality

Abstract

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible. Up to now there is no strategy to eliminate or lessen these unpleasant volatiles from wine. The present research aimed at assessing the efficacy of an alimentary plastic film for this purpose, as well as examining its potential impact on the colour, phenolic, aromatic and sensory attributes of wine.

The film treatment was able to successfully reduce the initial TCA content of the contaminated wines (≥47%, ≥73% and ≥81% after 8h, 24h and 48h of treatment, respectively). Colour was not visually perceived as different between untreated and film‒treated wines. Oenological parameters, total phenolic and tannin contents, as well as the flavan‒3‒ol and woody aroma profiles, did not change because of the film treatment. Meanwhile, a slightly increased anthocyanin content was noted beyond 24h of wine-film contact, maybe because of the plastic film absorption of certain wine components that anthocyanins are used to combine. A selective sorption of certain esters was observed, but no impact on the fruity perception of wines was underlined. Quite the opposite: film‒treated wines were described as more fruity than untreated ones, because the reduction of HAs content by the film treatment led to lower perception of corky notes, which were acting as a masking agent of pleasant aromas.

On the whole, film treatment may efficiently reduce cork taint of contaminated wines, by improving their overall organoleptic quality, and without almost no effect on their chromatic parameters, phenolic and aromatic composition.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

María Reyes González‒Centeno, Sophie Tempère, Pierre‒Louis Teissedre, Kleopatra Chira

Univ. Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France
INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4 This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

Evolution of several biochemical compounds during the development of Merlot wine in the vinegrowing “Terroir” of Valea Călugăreasa

The qualitative and quantitative distribution of the phenolic compounds in red wines depends on cultivars features, on grapes maturation state, on grapes processing technology including must obtention, as well as on maceration-fermentation method (Margheri, 1981). The last two factors are responsible for the different phenolic composition of the wines produced from the same cultivar.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.