Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Alimentary film to reduce cork taint and improve wine organoleptic quality

Alimentary film to reduce cork taint and improve wine organoleptic quality

Abstract

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible. Up to now there is no strategy to eliminate or lessen these unpleasant volatiles from wine. The present research aimed at assessing the efficacy of an alimentary plastic film for this purpose, as well as examining its potential impact on the colour, phenolic, aromatic and sensory attributes of wine.

The film treatment was able to successfully reduce the initial TCA content of the contaminated wines (≥47%, ≥73% and ≥81% after 8h, 24h and 48h of treatment, respectively). Colour was not visually perceived as different between untreated and film‒treated wines. Oenological parameters, total phenolic and tannin contents, as well as the flavan‒3‒ol and woody aroma profiles, did not change because of the film treatment. Meanwhile, a slightly increased anthocyanin content was noted beyond 24h of wine-film contact, maybe because of the plastic film absorption of certain wine components that anthocyanins are used to combine. A selective sorption of certain esters was observed, but no impact on the fruity perception of wines was underlined. Quite the opposite: film‒treated wines were described as more fruity than untreated ones, because the reduction of HAs content by the film treatment led to lower perception of corky notes, which were acting as a masking agent of pleasant aromas.

On the whole, film treatment may efficiently reduce cork taint of contaminated wines, by improving their overall organoleptic quality, and without almost no effect on their chromatic parameters, phenolic and aromatic composition.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

María Reyes González‒Centeno, Sophie Tempère, Pierre‒Louis Teissedre, Kleopatra Chira

Univ. Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France
INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

CONSUMER PERCEPTION OF INTERSPECIFIC HYBRID RED WINE COLOR IN RELATION TO ANTHOCYANIN PROFILE AND CHEMICAL COLOR PARAMETERS

Interspecific hybrid winegrapes are of growing interest in the context of climate change based on their disease resistance and cold hardiness. In addition to a need for increased understanding of their chemical composition, there is little empirical evidence on the consumer perception of non-vinifera wine. Phenolic compounds, and particularly color, play an important organoleptic and quality determination role in wine, but can vary significantly in interspecific hybrid wines compared to wines produced from Vitis vinifera cultivars [1, 2, 3]. Anecdotally, the variation in anthocyanin species, interactions, and concentrations in interspecific hybrids could result in a variance from“vinifera-like” wine color.

Entomopathogenic nematodes application for controlling Lobesia botrana in grapevine and their impact on grapevine quality 

Entomopathogenic nematodes (EPN) are well-known biological control agents combined with specific adjuvants that now allow their use against aerial pests. Lobesia botrana (Lepidoptera: Tortricidae) is one of the major harmful pests detected in worldwide vineyards. Previous studies demonstrated that the EPNs Steinernema feltiae and S. carpocapsae could control L. botrana. The hypothesis was that the best combination of EPN-adjuvant/timing (season/temperatures) will support the use of EPN in the vineyard against L. botrana with no impact on the grape performance.

The effect of Nitrogen and Sulphur foliar applications in hot climates

ine nitrogen deficiency can negatively influence the aroma profile and ageing potential of white wines. Canopy management can alter vine microclimate, affect the nitrogen availability and influence the response of leaf senescence. Increasing the nitrogen availability to vines can increase the Yeast Assimilable Nitrogen (YAN) levels in harvested fruit and wine. Studies show that foliar nitrogen and sulphur applications at véraison, on low YAN Sauvignon blanc grapes have an effect on the level of amino acids (Jreij et al. 2009) and on S-containing compounds such as glutathione and thiols (Lacroux et al. 2008), which in turn can influence the formation of major volatiles and the aroma profile of the wine.

Winemaking processes discrimination by using qNMR metabolomics

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a).

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,