Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Alimentary film to reduce cork taint and improve wine organoleptic quality

Alimentary film to reduce cork taint and improve wine organoleptic quality

Abstract

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible. Up to now there is no strategy to eliminate or lessen these unpleasant volatiles from wine. The present research aimed at assessing the efficacy of an alimentary plastic film for this purpose, as well as examining its potential impact on the colour, phenolic, aromatic and sensory attributes of wine.

The film treatment was able to successfully reduce the initial TCA content of the contaminated wines (≥47%, ≥73% and ≥81% after 8h, 24h and 48h of treatment, respectively). Colour was not visually perceived as different between untreated and film‒treated wines. Oenological parameters, total phenolic and tannin contents, as well as the flavan‒3‒ol and woody aroma profiles, did not change because of the film treatment. Meanwhile, a slightly increased anthocyanin content was noted beyond 24h of wine-film contact, maybe because of the plastic film absorption of certain wine components that anthocyanins are used to combine. A selective sorption of certain esters was observed, but no impact on the fruity perception of wines was underlined. Quite the opposite: film‒treated wines were described as more fruity than untreated ones, because the reduction of HAs content by the film treatment led to lower perception of corky notes, which were acting as a masking agent of pleasant aromas.

On the whole, film treatment may efficiently reduce cork taint of contaminated wines, by improving their overall organoleptic quality, and without almost no effect on their chromatic parameters, phenolic and aromatic composition.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

María Reyes González‒Centeno, Sophie Tempère, Pierre‒Louis Teissedre, Kleopatra Chira

Univ. Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France
INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.

Managing alcohol in sparkling wine production: adjusting harvest timing and utilizing grape juice in “liqueur de tirage”

Context and purpose of the study. Sparkling wine production is majorly impacted by climate change as sugar accumulation and aromatic development in grapes are often decoupled.

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.