Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

Abstract

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019). Another less common approach is from a qualitative point of view by studying the various oenological practices used that are an integral part of the elaboration of a wine. We wondered whether quantitative NMR could be used to dissociate the physical or chemical processes commonly used in oenology. The objective of this work was to provide a better understanding of the interactions between oenological processes and wine by determining the metabolites responsible for differentiation through 1H-NMR fingerprinting and chemometrics. 

About 40 molecules were quantified on wine samples that have undergone several physical and chemical processes. Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA) and S-score were performed for the analytical discrimination of winemaking processes. 

The results obtained show that qNMR combined with chemometrics allows to dissociate not only physical processes such as filtration, but also chemical processes such as maceration temperature, enzymatic treatment and fining. In addition, the metabolites involved in the discrimination of these winemaking processes could also be determined.

The 1H-NMR metabolomics is a fast technique that could be used as a tool to help professionals decide on technical itineraries. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Inès Le Mao1, Gregory Da Costa1, Jean Martin1, Eric Pedrot1, Soizic Lacampagne1, François Guyon2, Tristan Richard1

1Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210  chemin de Leysotte, 33882 Villenave d’Ornon, France
2Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, Pessac Cedex, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps.

High and extreme high temperature effects on shiraz berry composition 

Climate change is leading to a rise in average temperature and in the frequency and severity of heatwaves, and is already significantly disturbing grapevine phenology and berry composition. With the evolution of the weather of Australian grape growing regions that are already warm and hot, flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted. These compounds include anthocyanins and tannins which contribute substantially to grape and wine quality. The goals of this project were to determine if berry tannin accumulation is sensitive to high temperature and to enhance knowledge on upper temperature limits for viable wine production, in turn informing critical timing for mitigation strategies.

Long-term drought resilience of traditional red grapevine varieties from a semi-arid region

In recent decades, the scarcity of water resources in agriculture in certain areas has been aggravated by climate change, which has caused an increase in temperatures, changes in rainfall patterns, as well as an increase in the frequency of extreme phenomena such as droughts and heat waves. Although the vine is considered a drought-tolerant specie, it has to satisfy important water requirements to complete its cycle, which coincides with the hottest and driest months. Achieving sustainable viticulture in this scenario requires high levels of efficiency in the use of water, a scarce resource whose use is expected to be severely restricted in the near future. In this regard, the use of drought-tolerant varieties that are able to maintain grape yield and quality could be an effective strategy to face this change. During three consecutive seasons (2018-2020) the behavior in rainfed regime of 13 traditional red grapevine varieties of the Spain central region was studied. These varieties were cultivated in a collection at Centro de Investigación de la Vid y el Vino de Castilla-La Mancha (IVICAM-IRIAF) located in Tomelloso (Castilla-La Mancha, Spain). Yield components (yield, mean bunch and berry weight, pruning weight), physicochemical parameters of the musts (brix degree, total acidity, pH) and some physiological parameters related with water stress during ripening period (δ13C, δ18O) were analysed. The application of different statistical techniques to the results showed the existence of significant differences between varieties in their response to stressful conditions. A few varieties highlighted for their high ability to adapt to drought, being able to maintain high yields due to their efficiency in the use of water. In addition, it was possible quantify to what extent climate can be a determinant in the δ18O of musts under severe water stress conditions.

Characterization of vineyard sites for quality wine production. German experiences

The quality of grapevines measured by yield and must density in the northern part of Europe conditons can be characterized as a type of “cool climate” – vary strongly from year to year and from one production site to another. One hundred year observations in Johannisberg from 1890 to 1991 demonstrate for the yield formation a clear dependancy from the year combined with a steady increase in productivity; latter a proof of positive clonal selection efforts.