Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

Abstract

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019). Another less common approach is from a qualitative point of view by studying the various oenological practices used that are an integral part of the elaboration of a wine. We wondered whether quantitative NMR could be used to dissociate the physical or chemical processes commonly used in oenology. The objective of this work was to provide a better understanding of the interactions between oenological processes and wine by determining the metabolites responsible for differentiation through 1H-NMR fingerprinting and chemometrics. 

About 40 molecules were quantified on wine samples that have undergone several physical and chemical processes. Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA) and S-score were performed for the analytical discrimination of winemaking processes. 

The results obtained show that qNMR combined with chemometrics allows to dissociate not only physical processes such as filtration, but also chemical processes such as maceration temperature, enzymatic treatment and fining. In addition, the metabolites involved in the discrimination of these winemaking processes could also be determined.

The 1H-NMR metabolomics is a fast technique that could be used as a tool to help professionals decide on technical itineraries. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Inès Le Mao1, Gregory Da Costa1, Jean Martin1, Eric Pedrot1, Soizic Lacampagne1, François Guyon2, Tristan Richard1

1Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210  chemin de Leysotte, 33882 Villenave d’Ornon, France
2Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, Pessac Cedex, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Vintage influence on Grenache N, Syrah N and Mourvedre N in Côtes du Rhône (France)

Vintage is part of « terroir ». The aim of this work is to study, through vine and berry parameters, the effect of vintage on the three major red grape varieties in Côtes du Rhône : Grenache N, Syrah N and Mourvedre N. We first characterized vintages 1997 to 2003, highlighting similar features in grape development across the different cultivars since 2001 only.

Investigation of the biostimulant activity of naringenin on anthocyanins biosynthesis: from an explanatory transcriptomic approach on Gamay callus towards a future vineyard application

Context and purpose of the study. Anthocyanins are essential phenolic compounds in red wine, contributing significantly to colour intensity, stability, and sensory quality.

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

PESTICIDE RESIDUES IN THE VINEYARD ENVIRONMENTS: VINE LEAVES, GRAPE BERRIES, WINES, HONEYBEES AND ASIAN HORNETS

Synthetic pesticides are widely used in viticulture to ensure steady harvest quality and quantity. Fungicides are primarily used to control grapevine diseases but insecticides and herbicides are likewise used. Pesticide residues in viticultural areas currently represent a strong societal concern, but may also affect different trophic chains in such areas. In this project we wish to analyse honeybees collected from hives placed in different vineyards, their natural predator (the invasive hornet Vespa velutina), as well as the honey, grape berries, and wines produced.

Effect of redox mediators on the activity of laccase from Botrytis cinerea against volatile phenols

Volatile phenols namely 4-ethylphenol and 4-ethylguaiacol are formed by enzymatic decarboxylation of hydroxycinnamic acids by Brettanomyces yeasts to give vinylphenols and subsequent reduction of the vinyl group to form the correspondent ethylphenols. The presence of these compounds in wine affects negatively its aromatic quality, conferring unpleasant animal and phenolic odor when present in quantities above the olfactory detection threshold [1]. Several methods have been described to remove these undesirable compounds from wines, including the use laccase enzymes [2, 3]. Due to this, the aim of this work was to evaluate the effect of several natural redox mediators on the activity of Botrytis cinerea laccase against these volatile phenols.