Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

Abstract

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019). Another less common approach is from a qualitative point of view by studying the various oenological practices used that are an integral part of the elaboration of a wine. We wondered whether quantitative NMR could be used to dissociate the physical or chemical processes commonly used in oenology. The objective of this work was to provide a better understanding of the interactions between oenological processes and wine by determining the metabolites responsible for differentiation through 1H-NMR fingerprinting and chemometrics. 

About 40 molecules were quantified on wine samples that have undergone several physical and chemical processes. Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA) and S-score were performed for the analytical discrimination of winemaking processes. 

The results obtained show that qNMR combined with chemometrics allows to dissociate not only physical processes such as filtration, but also chemical processes such as maceration temperature, enzymatic treatment and fining. In addition, the metabolites involved in the discrimination of these winemaking processes could also be determined.

The 1H-NMR metabolomics is a fast technique that could be used as a tool to help professionals decide on technical itineraries. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Inès Le Mao1, Gregory Da Costa1, Jean Martin1, Eric Pedrot1, Soizic Lacampagne1, François Guyon2, Tristan Richard1

1Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210  chemin de Leysotte, 33882 Villenave d’Ornon, France
2Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, Pessac Cedex, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Understanding the physiological responses of Sauvignon blanc vines to sequential extreme weather events: implications for vineyard management in a changing climate

Climate plays a predominant role in vines’ growth and productivity and several environmental variables are already known to pose challenges to grapevine production and the horticultural industry as a whole. In this context, a number of extreme weather events already occurring and expected to occur in the next decades even more frequently and with higher magnitude results from current climate change scenario. The aim of this study was to examine the physiological responses of roots, leaves, and berries of Vitis vinifera cv. Sauvignon blanc to consecutive and combined stressors simulated in a semi-controlled environment.

Effects of major enological variables on the evolution of the chemical profile in Schiava over the vinification: an experimental design approach

Schiava cv. (germ. Vernatsch) is a group of grape varieties used for winemaking (e.g. Kleinvernatsch-Schiava gentile, Grauvernatsch-Schiava grigia, Edelvernatsch-Schiava grossa) historically reported in Northern Italy, Austria, Germany and Croatia. Beside common phenotypic traits, these varieties have been also hypothesized to share a common geographical origin in Slavonia (Eastern Croatia). Nowadays, Schiava cv. are considered historical grape varieties of northern regions of Italy such as Lombardy, Trentino and South Tyrol. Traditionally widely consumed locally and also exported, over the past decades there has been a steady drop in production of these grapes, although with a parallel increase in wine quality. In this report, the effects of three main enological variables on the chemical components of Schiava produced in South Tyrol (var. Schiava grossa) are investigated from grape to bottle.

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

NEW TREATMENTS FOR TEMPRANILLO WINES BY USING CABERNET SAUVIGNON VINE-SHOOTS AND MICRO-OXYGENATION

Toasted vine-shoots as enological additive represents a promising topic due to their significant effect on wine profile. However, the use of this new enological tool with SEGs varieties different than wine and combined with others winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far, despite this combination could result in wine with high chemical and organoleptic quality.