Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

Abstract

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019). Another less common approach is from a qualitative point of view by studying the various oenological practices used that are an integral part of the elaboration of a wine. We wondered whether quantitative NMR could be used to dissociate the physical or chemical processes commonly used in oenology. The objective of this work was to provide a better understanding of the interactions between oenological processes and wine by determining the metabolites responsible for differentiation through 1H-NMR fingerprinting and chemometrics. 

About 40 molecules were quantified on wine samples that have undergone several physical and chemical processes. Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA) and S-score were performed for the analytical discrimination of winemaking processes. 

The results obtained show that qNMR combined with chemometrics allows to dissociate not only physical processes such as filtration, but also chemical processes such as maceration temperature, enzymatic treatment and fining. In addition, the metabolites involved in the discrimination of these winemaking processes could also be determined.

The 1H-NMR metabolomics is a fast technique that could be used as a tool to help professionals decide on technical itineraries. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Inès Le Mao1, Gregory Da Costa1, Jean Martin1, Eric Pedrot1, Soizic Lacampagne1, François Guyon2, Tristan Richard1

1Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210  chemin de Leysotte, 33882 Villenave d’Ornon, France
2Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, Pessac Cedex, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

In line monitoring of red wine fermentations using ir spectrospcopy

There has been a shift in modern industry to implement non-destructive and non-invasive process monitoring techniques (Helmdach et al., 2013).

The use of remote sensing for intra-block vineyard management

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.