Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

Abstract

AIM: The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties to find new strategies to fight against climate change.

METHODS: The Variety Collecction that belongs to Instituto de Ciencias de la Vid y del Vino (ICVV), it’s made of 511 national and international grape varieties. This Collection was chosen due to the great diversity of grape varieties that contains. To this work, 25 white grape varieties were selected [2], which were classified into 3 groups: Important varieties in Spain (Airén, Cayetana, Xarello, Palomino Fino, Parellada, Albariño, Merseguera, Moscatel de Grano Menudo, Treixadura, Loureiro Blanco, Malvasía de Sitges), Important varieties in D.O.Ca. Rioja (Viura, Verdejo, Chardonnay, Sauvignon Blanc, Alarije, Garnacha Blanca, Tempranillo Blanco, Maturana Blanca), and International varieties (Gewürztraminer, Riesling, Trebbiano Toscano, Chasselas, Semillon, Pinot Blanc). The experimental design was of 3 repetitions for variety, with 3 plants for repetition. The grapes were collected at their optimal technological maturity, approximately at 21.2 ºBrix. In each sample, general parameters were determined using official methods [3]: ºBrix, pH, total acidity, glucose+fructose, glucose, fructose, malic acid, tartaric acid, total phenols, amino nitrogen, ammonium nitrogen, and yeast assimilable nitrogen (YAN).

RESULTS: In general, Important varieties in D.O.Ca. Rioja and International varieties have short or medium growth cycle; however Important varieties in Spain have medium or long vine cycle. In the first group, Important varieties in Spain, Albariño and Loureiro Blanco varieties had more acidity; Cayetana presented higher concentration of total phenols; and Albariño, Treixadura, and Xarello had higher concentration of nitrogen compounds. Moreover, Chardonnay and Maturana Blanca grape varieties showed high concentration of acids and nitrogen. In the second group, Important varieties in D.O.Ca. Rioja, Chardonnay had the most concentration of total phenols. Finally, in the third group, International varieties, Chasselas had the most concentration of total phenols and nitrogen compounds, and Riesling grape variety showed a medium concentration of total phenols and a high concentration of acidity and nitrogen compounds.

CONCLUSIONS

The characterization of 25 white grape varieties has provided an image of the heterogeneity of grape varieties present in national and international cultivation, removing the terroir factor. We are working on the study of the phenolic, aromatic and nitrogen composition of all these grape varieties in order to know in detail their enological potential and possible adaptation to the new climatic scenario.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Itziar Sáenz De Urturi 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Gobierno De La Rioja, Universidad De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain,I. Sáenz De Urturi S. Marín-San Román E. Baroja T. Garde-Cerdán*  Affiliation: Instituto De Ciencias De La Vid Y Del Vino (Csic, Gobierno De La Rioja, Universidad De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain 

Contact the author

Keywords

white grape varieties; grape composition; varietal preservation; maturation; phenolic maturity; technological maturity; climate change

Citation

Related articles…

Can soil nitrate explain polyphenol and anthocyanin content in vineyard with similar available soil water regime? 

Nitrogen (N) is quite important nutrient in grapevine development and must quality, but under Mediterranean climatic conditions, available soil water (ASW) during grapevine development can also influence vigour and must quality. The aim was to determine the influence of soil nitrate (NO3-) availability on N foliar, yield, and must quality in vineyards with similar available water holding capacity (AWC). For this purpose, four cv. Tempranillo (Vitis vinifera L.) vineyards were selected. All of them are placed in Uruñuela municipality (La Rioja, Spain), separated less than 2.5 km and in a slope <1 %, in soils with similar soil chemistry properties and with similar rooting depth (ranging between 105 cm and 110 cm).

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.

Vintage influence on Grenache N, Syrah N and Mourvedre N in Côtes du Rhône (France)

Vintage is part of « terroir ». The aim of this work is to study, through vine and berry parameters, the effect of vintage on the three major red grape varieties in Côtes du Rhône : Grenache N, Syrah N and Mourvedre N. We first characterized vintages 1997 to 2003, highlighting similar features in grape development across the different cultivars since 2001 only.

A new graphical interface as a tool to integrate data from GC-MS and UPLC-MS-QTOF: new compounds related with port wine aging

Port wine value is related to its molecular profile resulting from the changes occurring during the ageing period. It is of empirical knowledge that the style is greatly affected by the oxidation regimens, i.e. bottle versus barrel storage

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.