Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

Abstract

AIM: The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties to find new strategies to fight against climate change.

METHODS: The Variety Collecction that belongs to Instituto de Ciencias de la Vid y del Vino (ICVV), it’s made of 511 national and international grape varieties. This Collection was chosen due to the great diversity of grape varieties that contains. To this work, 25 white grape varieties were selected [2], which were classified into 3 groups: Important varieties in Spain (Airén, Cayetana, Xarello, Palomino Fino, Parellada, Albariño, Merseguera, Moscatel de Grano Menudo, Treixadura, Loureiro Blanco, Malvasía de Sitges), Important varieties in D.O.Ca. Rioja (Viura, Verdejo, Chardonnay, Sauvignon Blanc, Alarije, Garnacha Blanca, Tempranillo Blanco, Maturana Blanca), and International varieties (Gewürztraminer, Riesling, Trebbiano Toscano, Chasselas, Semillon, Pinot Blanc). The experimental design was of 3 repetitions for variety, with 3 plants for repetition. The grapes were collected at their optimal technological maturity, approximately at 21.2 ºBrix. In each sample, general parameters were determined using official methods [3]: ºBrix, pH, total acidity, glucose+fructose, glucose, fructose, malic acid, tartaric acid, total phenols, amino nitrogen, ammonium nitrogen, and yeast assimilable nitrogen (YAN).

RESULTS: In general, Important varieties in D.O.Ca. Rioja and International varieties have short or medium growth cycle; however Important varieties in Spain have medium or long vine cycle. In the first group, Important varieties in Spain, Albariño and Loureiro Blanco varieties had more acidity; Cayetana presented higher concentration of total phenols; and Albariño, Treixadura, and Xarello had higher concentration of nitrogen compounds. Moreover, Chardonnay and Maturana Blanca grape varieties showed high concentration of acids and nitrogen. In the second group, Important varieties in D.O.Ca. Rioja, Chardonnay had the most concentration of total phenols. Finally, in the third group, International varieties, Chasselas had the most concentration of total phenols and nitrogen compounds, and Riesling grape variety showed a medium concentration of total phenols and a high concentration of acidity and nitrogen compounds.

CONCLUSIONS

The characterization of 25 white grape varieties has provided an image of the heterogeneity of grape varieties present in national and international cultivation, removing the terroir factor. We are working on the study of the phenolic, aromatic and nitrogen composition of all these grape varieties in order to know in detail their enological potential and possible adaptation to the new climatic scenario.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Itziar Sáenz De Urturi 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Gobierno De La Rioja, Universidad De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain,I. Sáenz De Urturi S. Marín-San Román E. Baroja T. Garde-Cerdán*  Affiliation: Instituto De Ciencias De La Vid Y Del Vino (Csic, Gobierno De La Rioja, Universidad De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain 

Contact the author

Keywords

white grape varieties; grape composition; varietal preservation; maturation; phenolic maturity; technological maturity; climate change

Citation

Related articles…

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées