Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

Abstract

AIM: The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties to find new strategies to fight against climate change.

METHODS: The Variety Collecction that belongs to Instituto de Ciencias de la Vid y del Vino (ICVV), it’s made of 511 national and international grape varieties. This Collection was chosen due to the great diversity of grape varieties that contains. To this work, 25 white grape varieties were selected [2], which were classified into 3 groups: Important varieties in Spain (Airén, Cayetana, Xarello, Palomino Fino, Parellada, Albariño, Merseguera, Moscatel de Grano Menudo, Treixadura, Loureiro Blanco, Malvasía de Sitges), Important varieties in D.O.Ca. Rioja (Viura, Verdejo, Chardonnay, Sauvignon Blanc, Alarije, Garnacha Blanca, Tempranillo Blanco, Maturana Blanca), and International varieties (Gewürztraminer, Riesling, Trebbiano Toscano, Chasselas, Semillon, Pinot Blanc). The experimental design was of 3 repetitions for variety, with 3 plants for repetition. The grapes were collected at their optimal technological maturity, approximately at 21.2 ºBrix. In each sample, general parameters were determined using official methods [3]: ºBrix, pH, total acidity, glucose+fructose, glucose, fructose, malic acid, tartaric acid, total phenols, amino nitrogen, ammonium nitrogen, and yeast assimilable nitrogen (YAN).

RESULTS: In general, Important varieties in D.O.Ca. Rioja and International varieties have short or medium growth cycle; however Important varieties in Spain have medium or long vine cycle. In the first group, Important varieties in Spain, Albariño and Loureiro Blanco varieties had more acidity; Cayetana presented higher concentration of total phenols; and Albariño, Treixadura, and Xarello had higher concentration of nitrogen compounds. Moreover, Chardonnay and Maturana Blanca grape varieties showed high concentration of acids and nitrogen. In the second group, Important varieties in D.O.Ca. Rioja, Chardonnay had the most concentration of total phenols. Finally, in the third group, International varieties, Chasselas had the most concentration of total phenols and nitrogen compounds, and Riesling grape variety showed a medium concentration of total phenols and a high concentration of acidity and nitrogen compounds.

CONCLUSIONS

The characterization of 25 white grape varieties has provided an image of the heterogeneity of grape varieties present in national and international cultivation, removing the terroir factor. We are working on the study of the phenolic, aromatic and nitrogen composition of all these grape varieties in order to know in detail their enological potential and possible adaptation to the new climatic scenario.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Itziar Sáenz De Urturi 

Instituto De Ciencias De La Vid Y Del Vino (Csic, Gobierno De La Rioja, Universidad De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain,I. Sáenz De Urturi S. Marín-San Román E. Baroja T. Garde-Cerdán*  Affiliation: Instituto De Ciencias De La Vid Y Del Vino (Csic, Gobierno De La Rioja, Universidad De La Rioja). Carretera De Burgos, Km. 6. 26007 Logroño, Spain 

Contact the author

Keywords

white grape varieties; grape composition; varietal preservation; maturation; phenolic maturity; technological maturity; climate change

Citation

Related articles…

THE INFLUENCE OF COMMERCIAL SACCHAROMYCES CEREVISIAE ON THE POLY-SACCHARIDES AND OTHER CHEMICAL PROFILES OF NEW ZEALAND PINOT NOIR WINES

Wine polysaccharides (PS) play an important role in balancing mouthfeel and stability of wine and even influence aroma volatility. Despite this, there is limited research into the effect of winemaking additives on the polysaccharide profile and other macromolecules of New Zealand (NZ) Pinot noir wine. In this study the influence of a selection of commercial S. cerevisiae strains on the chemical profile, including polysaccharides, of New Zealand Pinot noir (PN) wine was investigated. Research scale PN fermentations using five strains of commercially available S. cerevisiae (Lalvin EC1118 and RC212, Levuline BRG YSEO, Viallate Ferm R71 and R82) were undertaken. PS were qualified and quantified using HPLC-RID.

Testing the effectiveness of Cell-Wall material from grape pomace as fining agent for red wines

Lately several works highlighted the capacity of grape cell-wall material (CWM) to interact with proanthocyanidins (PA), indicating its potential use as fining agent for red wines.1–4 However, those studies were performed by using purified PAs and very high doses of CWM (almost ten-fold higher than those used in wine industry for other commercial fining agents). The present study focuses on the applicability of CWM from Cabernet sauvignon pomace as fining agent for red wines under real winery conditions. Grapes of cultivar Cabernet sauvignon were harvested at three different maturity levels
(unripe, mature, and overripe) and used for red winemaking. The pomace of such vinifications were used as source of CWM, and applied into red wines at two different concentrations: 0.2 g/L and 2.5 g/L.

The effect of wine matrix on the initial release of volatile compounds and their evolution in the headspace

There is evidence in the literature that non-volatile wine matrix can modify the release and therefore the perception of the compounds involved in wine aroma [1-3].

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”