Grape texture characteristics are linked to one major qtl

Abstract

AIM: Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes. Despite the efforts already made to detect molecular markers and candidate genes associated with berry texture, different QTLs were proposed until now, showing low contribution rates to the trait, likely due to difficulty in phenotyping. Searching for QTLs linked to berry texture, an F1 population of 154 individuals and their parents (‘Raboso Veronese’ and ‘Sultanina’) were used in this study.

METHODS: Density sorting by flotation was applied to reduce sample variability. One density class was selected achieving berries with a similar ripening stage. Mechanical properties were measured and normalized on berry diameter, surface, and volume. Hundred and ninety SSR molecular markers were used to produce a genetic map using JoinMap. MapQTL was applied searching for QTLs associated with berry texture traits. VviAGL11 expression profiling and co-expression analysis during grape ripening was evaluated using available transcriptomic datasets.

RESULTS: A major QTL was found on LG 18, with high LOD scores (from 25.07 to 31.92) and high phenotypic variance explained (from 53.2 to 63.5%) for all measured texture traits. Surprisingly, this major QTL showed association with SSR markers linked to VviAGL11, the main gene leading to stenospermocarpy. Data available on VviAGL11 expression and co-expression profiling during grape ripening strongly suggested that this gene may act on the traits of a ripe berry through the activation of some target genes involved in lipid and hormone metabolism, transport and in gene expression regulation.

CONCLUSIONS

Previous studies showed how difficult is determining the genetic control of berry texture. Our results clearly underline the major role played by a QTL located on LG18 and characterized by the presence of the well-known MADS-box gene VviAGL11.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manna Crespan

CREA Research Centre of Viticulture and Enology, Conegliano, Italy,Daniele Migliaro, CREA Research Centre of Viticulture and Enology, Conegliano, Italy Silvia Vezzulli, Fondazione Edmund Mach, S. Michele a/Adige, Trento, Italy Sara Zenoni, University of Verona, Italy Giovanni Battista Tornielli, University of Verona, Italy Simone Giacosa, University of Torino, Italy Maria Alessandra Paissoni, University of Torino, Italy Susana Río Segade, University of Torino, Italy Luca Rolle, University of Torino, Italy

Contact the author

Keywords

Vitis vinifera L., fruit quality, flotation, lg18, vviagl11, mads box genes

Citation

Related articles…

Identification and biological properties of new resveratrol derivatives formed in red wine

Resveratrol is a well-known wine constituent with a wide range of activities. In wines, resveratrol can be oxidized to form various derivatives including oligomers [1]. In this study, resveratrol derivative transformation in hydroalcoholic solution was investigated by oxidative coupling using metals. De novo resveratrol derivatives were synthetized and analysed by NMR and MS experiments

Sheep manure: An effective regenerative practice for enhancing Plavac Mali (Vitis vinifera L.) wine quality in dry-farming vineyards on Hvar island

There is an urgent need to develop protective measures for grapevines in historically significant dry-farming vineyards, particularly on Mediterranean islands.

Monitoring of alcoholic fermentation: development of an applicable in-line system

Alcoholic fermentation plays a crucial role in the winemaking process. In addition to producing ethanol, it results in the formation of various secondary metabolites that significantly influence the wine’s characteristics.

SENSORY CHARACTERIZATION OF COGNAC EAUX-DE-VIE AGED IN BARRELS REPRESENTING DIFFERENT TOASTING PROCESS

Cognac is an outstanding french wine spirit appreciated around the world and produced exclusively in the Nouvelle-Aquitaine region, and more precisely in the Cognac area. According to AOC regulations (Appellation D’origine Controlée), the spirit required at least 2 years of continuous ageing in oak barrels to be granted the title of Cognac. The oak wood will import color, structure and organoleptic complexity. The different steps during barrel-making process, such as seasoning and toasting, influence the above quality attributes in both wines and spirits.

ALCOHOLIC FERMENTATION DRIVES THE SELECTION OF OENOCOCCUS OENI STRAINS IN WINE

Oenococcus oeni is the predominant lactic acid bacteria species in wine and cider, where it performs the malolactic fermentation (MLF) (Lonvaud-Funel, 1999). The O. oeni strains analyzed to date form four major genetic lineages named phylogroups A, B, C and D (Lorentzen et al., 2019). Most of the strains isolated from wine, cider, or kombucha belong to phylogroups A, B+C, and D, respectively, although B and C strains were also detected in wine (Campbell-Sills et al., 2015; Coton et al., 2017; Lorentzen et al., 2019;