Grape texture characteristics are linked to one major qtl

Abstract

AIM: Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes. Despite the efforts already made to detect molecular markers and candidate genes associated with berry texture, different QTLs were proposed until now, showing low contribution rates to the trait, likely due to difficulty in phenotyping. Searching for QTLs linked to berry texture, an F1 population of 154 individuals and their parents (‘Raboso Veronese’ and ‘Sultanina’) were used in this study.

METHODS: Density sorting by flotation was applied to reduce sample variability. One density class was selected achieving berries with a similar ripening stage. Mechanical properties were measured and normalized on berry diameter, surface, and volume. Hundred and ninety SSR molecular markers were used to produce a genetic map using JoinMap. MapQTL was applied searching for QTLs associated with berry texture traits. VviAGL11 expression profiling and co-expression analysis during grape ripening was evaluated using available transcriptomic datasets.

RESULTS: A major QTL was found on LG 18, with high LOD scores (from 25.07 to 31.92) and high phenotypic variance explained (from 53.2 to 63.5%) for all measured texture traits. Surprisingly, this major QTL showed association with SSR markers linked to VviAGL11, the main gene leading to stenospermocarpy. Data available on VviAGL11 expression and co-expression profiling during grape ripening strongly suggested that this gene may act on the traits of a ripe berry through the activation of some target genes involved in lipid and hormone metabolism, transport and in gene expression regulation.

CONCLUSIONS

Previous studies showed how difficult is determining the genetic control of berry texture. Our results clearly underline the major role played by a QTL located on LG18 and characterized by the presence of the well-known MADS-box gene VviAGL11.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manna Crespan

CREA Research Centre of Viticulture and Enology, Conegliano, Italy,Daniele Migliaro, CREA Research Centre of Viticulture and Enology, Conegliano, Italy Silvia Vezzulli, Fondazione Edmund Mach, S. Michele a/Adige, Trento, Italy Sara Zenoni, University of Verona, Italy Giovanni Battista Tornielli, University of Verona, Italy Simone Giacosa, University of Torino, Italy Maria Alessandra Paissoni, University of Torino, Italy Susana Río Segade, University of Torino, Italy Luca Rolle, University of Torino, Italy

Contact the author

Keywords

Vitis vinifera L., fruit quality, flotation, lg18, vviagl11, mads box genes

Citation

Related articles…

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

The evolution of wine tourism: trends, challenges and opportunities for the future

The wine tourism industry has experienced significant transformation over the past years, accelerated by the COVID-19 pandemic.

ABA and ethephon alleviated to a different extent the impact of elevated temperatures on grape berry composition

The Intergovernmental Panel on Climate Change (IPCC) forecasts an increase in global temperature and a decrease in relative humidity (RH) in the coming decades, which may have implications for berry ripening and composition.

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).