Grape texture characteristics are linked to one major qtl

Abstract

AIM: Berry texture and berry skin mechanical properties have high agronomic importance, related to quality and marketing requirements of wine, table and raisin grapes. Despite the efforts already made to detect molecular markers and candidate genes associated with berry texture, different QTLs were proposed until now, showing low contribution rates to the trait, likely due to difficulty in phenotyping. Searching for QTLs linked to berry texture, an F1 population of 154 individuals and their parents (‘Raboso Veronese’ and ‘Sultanina’) were used in this study.

METHODS: Density sorting by flotation was applied to reduce sample variability. One density class was selected achieving berries with a similar ripening stage. Mechanical properties were measured and normalized on berry diameter, surface, and volume. Hundred and ninety SSR molecular markers were used to produce a genetic map using JoinMap. MapQTL was applied searching for QTLs associated with berry texture traits. VviAGL11 expression profiling and co-expression analysis during grape ripening was evaluated using available transcriptomic datasets.

RESULTS: A major QTL was found on LG 18, with high LOD scores (from 25.07 to 31.92) and high phenotypic variance explained (from 53.2 to 63.5%) for all measured texture traits. Surprisingly, this major QTL showed association with SSR markers linked to VviAGL11, the main gene leading to stenospermocarpy. Data available on VviAGL11 expression and co-expression profiling during grape ripening strongly suggested that this gene may act on the traits of a ripe berry through the activation of some target genes involved in lipid and hormone metabolism, transport and in gene expression regulation.

CONCLUSIONS

Previous studies showed how difficult is determining the genetic control of berry texture. Our results clearly underline the major role played by a QTL located on LG18 and characterized by the presence of the well-known MADS-box gene VviAGL11.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Manna Crespan

CREA Research Centre of Viticulture and Enology, Conegliano, Italy,Daniele Migliaro, CREA Research Centre of Viticulture and Enology, Conegliano, Italy Silvia Vezzulli, Fondazione Edmund Mach, S. Michele a/Adige, Trento, Italy Sara Zenoni, University of Verona, Italy Giovanni Battista Tornielli, University of Verona, Italy Simone Giacosa, University of Torino, Italy Maria Alessandra Paissoni, University of Torino, Italy Susana Río Segade, University of Torino, Italy Luca Rolle, University of Torino, Italy

Contact the author

Keywords

Vitis vinifera L., fruit quality, flotation, lg18, vviagl11, mads box genes

Citation

Related articles…

Methyl Jasmonate Versus Nano-Methyl Jasmonate: Effect On The Stilbene Content In Monastrell Variety

Stilbenes, a kind of non-flavonoid phenolic compounds, have been reported to be responsible for various beneficial effects. Their biological properties include antibacterial and antifungal effects, as well as cardioprotective, neuroprotective and anticancer actions (Guerrero et al. 2009).Several strategies can be used to increase stilbene content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost (Gil-Muñoz et al. 2021).

Typicality related to terroir: from conceptual to perceptual representation: study of the links with enological practices

The conceptual image of a wine related to the terroir has consequences in technical terms. Among factors affecting the typicality, producers put forward the environmental factors of the terroir system

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC.

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.