Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

Abstract

AIM: Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides. Polysaccharides have been comprehensively studied because of their importance (technological and sensory properties in wines). Unlike polysaccharides, oligosaccharides have only recently been characterised. Following a concise focus about the polysaccharide composition of grape seeds, in this work we describes the purification and the identification of low molecular weight saccharides contained in the aqueous extract of grape seeds.

METHODS: A sequential two-step purification by size exclusion chromatography was carried out to fractionate compounds according to molecular weights. Chemical characterization of the combined fractions was performed by Magnetic Resonance Spectroscopy analysis and by high-resolution accurate-mass (Orbitrap mass analyzer).

RESULTS: Apart from sucrose and glucose, a fraction containing primarily a trisaccharide has been detected. Acetylation allowed the purification of the trisaccharide by flash chromatography. Structural determination on the acetylated derivative revealed the trisaccharide gentianose, a predominant carbohydrate reserve in storage roots of perennial Gentiana lutea, poorly discovered in other genera.

CONCLUSIONS:

The identification of gentianose, in grape seeds, could open new studies related to its biological functions, as well as to confirm its potential as prebiotic compound, as suggested by preliminary works.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matteo Bordiga, Daniela IMPERIO. Fabiano TRAVAGLIA, Jean Daniel, Luigi PANZA, Marco ARLORIO

Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”. Largo Donegani 2, 28100 Novara, Italy.

Contact the author

Citation

Related articles…

The influence of the soil on the phenolic composition of both grapes and wines : “the Grenache observatory”

La composition fine des raisins de Grenache noir est mal connue. Il est généralement admis une certaine variabilité de comportement de ce cépage qui se manifeste principalement sur la couleur des vins. De nombreux facteurs peuvent être à l’origine de cette variabilité : matériel végétal, pratiques culturales, types de vinification et terroir. Un travail de recherche concernant ce cépage a été engagé dans la Vallée du Rhône.

Supramolecular approaches to the study of the astringency elicited by wine phenolic compounds

The objective of this study is to review the scientific evidences and to advance into the knowledge of the molecular mechanisms of astringency. Astringency has been described as the drying, roughing and puckering sensation perceived when some food and beverages are tasted (1). The main, but possibly not the only, mechanism for the astringency is the precipitation of salivary proteins (2,3). Between phenolic compounds found in red wines, flavan-3-ols are the group usually related to the development of this sensation. Other compounds, phenolic or not, like anthocyanins, polysaccharides and mannoproteins could act modifying or modulating astringency perception by hindering the interaction between flavanols and salivary proteins either because of their interaction with the flavanols or because of their interaction with the salivary proteins.

First characterization of Torrontés Riojano in la Rioja, Argentina: impact of pruning intensity on vine vigor and grape production 

Pruning is one essential vineyard management activity whose main purpose is to regulate plant growth and vigour, modulating berry size, and consequently, wine quality. In Chilecito, La Rioja Province, Argentina, Torrontés Riojano stands as the only autochthonous variety for winemaking, yielding golden and aromatic berries and distinctive muscatel-tasting wines. This white cultivar, resulting from the natural cross between Moscatel de Alejandría x Criolla Chica, is traditionally trained in “parral” (horizontal trellis system), aimed to manage vigorous canopies. This project constitutes the first study on the influence of pruning intensity on Torrontés Riojano growth habit and berry quality.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.

Microclimatic differences in fruit zone of vineyards on different elevations of ‘nagy-eged hill’ in eger wine region, Hungary

The Bull’s Blood of Eger (‘Egri Bikavér’) is one of the most reputed red wines in Hungary and abroad, produced in the Northeastern part of the country.