Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

Oligosaccharides from Vitis vinifera grape seeds: a focus on gentianose as a novel bioactive compound

Abstract

AIM: Grape seeds (Vitis vinifera) are among the main constituents of grape pomace, also exploited in ingredients for nutraceutics and cosmeceutics, particularly regarding the phenolic fraction. The macromolecules of grape/wine include polyphenols, proteins and polysaccharides. Polysaccharides have been comprehensively studied because of their importance (technological and sensory properties in wines). Unlike polysaccharides, oligosaccharides have only recently been characterised. Following a concise focus about the polysaccharide composition of grape seeds, in this work we describes the purification and the identification of low molecular weight saccharides contained in the aqueous extract of grape seeds.

METHODS: A sequential two-step purification by size exclusion chromatography was carried out to fractionate compounds according to molecular weights. Chemical characterization of the combined fractions was performed by Magnetic Resonance Spectroscopy analysis and by high-resolution accurate-mass (Orbitrap mass analyzer).

RESULTS: Apart from sucrose and glucose, a fraction containing primarily a trisaccharide has been detected. Acetylation allowed the purification of the trisaccharide by flash chromatography. Structural determination on the acetylated derivative revealed the trisaccharide gentianose, a predominant carbohydrate reserve in storage roots of perennial Gentiana lutea, poorly discovered in other genera.

CONCLUSIONS:

The identification of gentianose, in grape seeds, could open new studies related to its biological functions, as well as to confirm its potential as prebiotic compound, as suggested by preliminary works.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matteo Bordiga, Daniela IMPERIO. Fabiano TRAVAGLIA, Jean Daniel, Luigi PANZA, Marco ARLORIO

Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”. Largo Donegani 2, 28100 Novara, Italy.

Contact the author

Citation

Related articles…

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.

Which microorganisms contribute to mousy off-flavour in our wines?

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about Which microorganisms contribute to mousy off-flavour in owines. This presentation is based on articles accessible for free on OENO One and IVES Technical Reviews.

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

The Fruška Gora mountain is a traditional wine-growing region in Serbia situated in the Pannonian Basin. Due to such a position, the vicinity of the Danube River and the presence of concave configuration, it is suitable for grape production. This paper provides analyses of spatial variations in meteorological parameters and grape juice quality within Fruška Gora wine region over three consecutive vintages (2018-2020). The examined period can be defined as warm with cool nights during September (AVG 18,9°C; GDD 1918°C; CI 12°CF) and with the presence of mesoclimatic variability. The East part of the study area was somewhat drier and hotter compared to other parts of the region. The analyses of grape must samples (190 in total) of five cultivars (Cabernet-Sauvignon, Merlot, Chardonnay, Sauvignon blanc and Grašac (Welschriesling)) commonly grown across the region (19 sites), were performed using Fourier Transform Infrared Technology (FTIR). Among all cultivars, Sauvignon blanc was harvested first in the East area (DOY=246±5, GDD at harvest=1552±74, 22.2±0.7 °Brix), while the latest harvest was recorded for Cabernet-Sauvignon in the West (DOY=283±5, GDD at harvest=1936±187, 23.4±1.0 °Brix ). Both the red and white cultivars had higher acidity and YAN in the grape must if the vines were grown in the North and East compared to South and West areas. According to PCA analysis, Grašac showed the lowest variation in grape must chemical composition. Thus, the results confirm that Grašac is the most stable cultivar in Fruška Gora. All monitored cultivars reached technological fruit ripeness by the end of the growing season. However, it was difficult to reach full ripeness of red cultivars, mostly beacuse of uncoupling of technolocical and phenolic ripeness. Thus, Cabernet-Sauvignon had higher variations in GDD sums at harvest compared to other cultivars, which probably increased variations in grape must quality.