Macrowine 2021
IVES 9 IVES Conference Series 9 Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

Abstract

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character. The production of SO2-free wines may lead to the development of different spoiling microorganisms, which could lead to wine deterioration. One of the strategies suggested to avoid wine spoilage, is the non-Saccharomyces yeast inoculation, which prevent bacteria development. The objective of this work was to evaluate the bioprotective effect of a mixed inoculum of non-Saccharomyces yeasts (Torulaspora delbrueckii and Lachancea thermotolerans 70/30) in two consecutive vintages (2018 and 2019). Three strategies were carried out in triplicate: spontaneous fermentation in sulphited must, spontaneous fermentation in non sulphited must and inoculated fermentation (non-Saccharomyces mixed inoculum) in non sulphited must. In all cases, after 72 hours of fermentation the vats were seeded with a commercial Saccharomyces cerevisiae yeast. The presence in the medium of lactic and acetic bacteria and the chemical composition of the wines were evaluated. The obtained results indicated that the bioprotective effect of non-Saccharomyces yeasts inoculation was determined by the success of the implantation. Only in 2019 assays the inoculum was successfully implanted, and therefore, the bioprotective effect was like the observed for sulphited samples, since it limited the lactic and acetic bacteria population. This inoculation also modulated the physicochemical composition of the resulting wines. However, in 2018 the inoculum was not implanted and differences were not detected, neither in wines composition nor in the detected bacteria.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rocio Escribano Viana , Mª del Patrocinio Garijo, Rosa López, Pilar Santamaría, Ana Rosa Gutiérrez, Lucía González Arenzana.

ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.

Contact the author

Citation

Related articles…

Characterization of non-cultivated wild grapevines in Extremadura (Spain) 

Several Eurasian wild grapevine populations were found along Extremadura region (southwestern Spain). For conservation and study, one individual from four different populations (named L1, L2, L5 and L6) was vegetatively propagated and planted at Instituto de Investigaciones Agrarias Finca La Orden (CICYTEX), Badajoz. The aim of the present work was to characterize those conserved individuals from four different populations based on both an ampelographic description and a molecular analysis. Three vines per individual were studied.

Understanding the onset of systemic infection of red blotch virus and phenotypic studies of grapevines expressing a red blotch virus infectious clone

Context and purpose of the study. Red Blotch disease, an affliction caused by the Grapevine red blotch-associated virus (GRBaV), represents a formidable challenge for grape growers and winemakers in prominent viticultural regions around the world.

Post-spring frost canopy development and fruit composition in cv. Barbera grapevines

One of the effects of warming trends is the advance of budburst, increasing the frequency of spring frost-related damage. In April 2021, a severe frost event affected central and northern italian viticulture. In a cv. Barbera vineyard located in the Colli Piacentini wine district, after such occurrence, vines were tracked and growth of primary bud shoots (PBS), secondary bud shoots (SBS), and suckers (SK) was monitored, as well as their fruitfulness and fruit composition. Vine performances were then compared to those of the previous year, when no post-budburst freezing temperatures occurred. The goal of the study was to evaluate the efficacy of SBS in restoring yield loss due to PBS injuries and analyze respective contribution to fruit composition.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

Assessment of O2 consumption, a new tool to select bioprotection yeast strains

Reduction of sulfur dioxide during winemaking is a request from the wine industry. To replace sulfur dioxide, various alternatives exist, including bioprotection by yeast inoculation. This practice consists in adding non-Saccharomyces yeasts directly on the grapes or must.