Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

Abstract

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.

METHODS: This study evaluated the effect of a wide range of environmentally friendly products applied in the vineyard on grape yeast ecology at harvest, as well as during spontaneous and inoculated fermentations in winery and laboratory scale conditions. Yeast ecology was investigated using culture-dependent (plate counts) and -independent (Next Generation Sequencing) methods. Main oenological parameters and volatile compounds were monitored during spontaneous and inoculated fermentations. Spearman’s correlation was used to assess associations between ASVs changes and chemical composition observed over fermentation.

RESULTS: No significant differences were observed among the alternative and conventional treatments, compared to the controls, in terms of yeast population and biodiversity. The only exception was the increased population levels of Auerobasidium pullulans as response to three alternative treatments. This increase can positively affect the quality and the safety of the grapes, since A. pullulans is considered a biocontrol agent of pathogens. Overall, wine composition was greatly influenced by the inoculation, rather than the type of treatment applied previously in the vineyard. Fermentation data suggested that complete alcoholic fermentation was positively correlated to the application of antifungal treatment in the vineyard and the inoculation protocol used. Spontaneous fermentations conducted in laboratory using grapes previously treated with laminarin showed a higher relative frequency of Saccharomyces cerevisiae than other treatments, and its corresponding fermentation led to compounds responsible for floral and fruity scents without increasing the levels of the acetic acid.

CONCLUSIONS:

Yeast ecology in fermenting musts may be correlated to specific antifungal products and inoculation protocol employed, suggesting a link between principal active compounds, yeast biodiversity and wine chemical composition. These relationships could help to further control wine quality and improve consumer acceptance and economic value of wines.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vasileios Englezo, Vasileios ENGLEZOS, Ilario FERROCINO, Simone GIACOSA, Susana RIO SEGADE, Jatziri MOTA-GUTIERREZ, Luca COCOLIN, Luca ROLLE, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

A study on the oenological potentiality of the territory of a cooperative winery in Valpolicella (Italy)

A 3-year zoning study promoted by the Cooperative Winery Valpolicella (Negrar, Verona, Italy) was carried out on a wine territory of about 500 ha.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

Sustainable strategies for the management and valorization of wine lees

Wine lees represent an abundant yet largely undervalorised by-product of the winemaking industry.