Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

Abstract

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.

METHODS: This study evaluated the effect of a wide range of environmentally friendly products applied in the vineyard on grape yeast ecology at harvest, as well as during spontaneous and inoculated fermentations in winery and laboratory scale conditions. Yeast ecology was investigated using culture-dependent (plate counts) and -independent (Next Generation Sequencing) methods. Main oenological parameters and volatile compounds were monitored during spontaneous and inoculated fermentations. Spearman’s correlation was used to assess associations between ASVs changes and chemical composition observed over fermentation.

RESULTS: No significant differences were observed among the alternative and conventional treatments, compared to the controls, in terms of yeast population and biodiversity. The only exception was the increased population levels of Auerobasidium pullulans as response to three alternative treatments. This increase can positively affect the quality and the safety of the grapes, since A. pullulans is considered a biocontrol agent of pathogens. Overall, wine composition was greatly influenced by the inoculation, rather than the type of treatment applied previously in the vineyard. Fermentation data suggested that complete alcoholic fermentation was positively correlated to the application of antifungal treatment in the vineyard and the inoculation protocol used. Spontaneous fermentations conducted in laboratory using grapes previously treated with laminarin showed a higher relative frequency of Saccharomyces cerevisiae than other treatments, and its corresponding fermentation led to compounds responsible for floral and fruity scents without increasing the levels of the acetic acid.

CONCLUSIONS:

Yeast ecology in fermenting musts may be correlated to specific antifungal products and inoculation protocol employed, suggesting a link between principal active compounds, yeast biodiversity and wine chemical composition. These relationships could help to further control wine quality and improve consumer acceptance and economic value of wines.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vasileios Englezo, Vasileios ENGLEZOS, Ilario FERROCINO, Simone GIACOSA, Susana RIO SEGADE, Jatziri MOTA-GUTIERREZ, Luca COCOLIN, Luca ROLLE, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

The surprising role of VvLYK6 in grapevine immune responses triggered by chitin oligomers

For sustainable viticulture, the substitution of chemical inputs with biocontrol products has become one of the most considered strategies. This strategy is based on elicitor-triggered immunity that requires a deep understanding of the molecular mechanisms involved in plant defense activation. Plant immune responses are triggered through the perception of conserved microbe-associated molecular patterns (MAMPs) which are recognized by pattern recognition receptors (PRRs) at the plasma membrane.

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2).

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited.