Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

Effect of environmentally friendly vineyard protection strategies on yeast ecology during fermentation

Abstract

AIM: Currently, an increasing concern from governments and consumers about environmental sustainability of wine production provides new challenges for innovation in wine industry. Accordingly, the application of more-environmentally friendly vineyard treatments against fungal diseases (powdery and downy mildew) could have a cascading impact on yeast ecology of wine production.

METHODS: This study evaluated the effect of a wide range of environmentally friendly products applied in the vineyard on grape yeast ecology at harvest, as well as during spontaneous and inoculated fermentations in winery and laboratory scale conditions. Yeast ecology was investigated using culture-dependent (plate counts) and -independent (Next Generation Sequencing) methods. Main oenological parameters and volatile compounds were monitored during spontaneous and inoculated fermentations. Spearman’s correlation was used to assess associations between ASVs changes and chemical composition observed over fermentation.

RESULTS: No significant differences were observed among the alternative and conventional treatments, compared to the controls, in terms of yeast population and biodiversity. The only exception was the increased population levels of Auerobasidium pullulans as response to three alternative treatments. This increase can positively affect the quality and the safety of the grapes, since A. pullulans is considered a biocontrol agent of pathogens. Overall, wine composition was greatly influenced by the inoculation, rather than the type of treatment applied previously in the vineyard. Fermentation data suggested that complete alcoholic fermentation was positively correlated to the application of antifungal treatment in the vineyard and the inoculation protocol used. Spontaneous fermentations conducted in laboratory using grapes previously treated with laminarin showed a higher relative frequency of Saccharomyces cerevisiae than other treatments, and its corresponding fermentation led to compounds responsible for floral and fruity scents without increasing the levels of the acetic acid.

CONCLUSIONS:

Yeast ecology in fermenting musts may be correlated to specific antifungal products and inoculation protocol employed, suggesting a link between principal active compounds, yeast biodiversity and wine chemical composition. These relationships could help to further control wine quality and improve consumer acceptance and economic value of wines.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vasileios Englezo, Vasileios ENGLEZOS, Ilario FERROCINO, Simone GIACOSA, Susana RIO SEGADE, Jatziri MOTA-GUTIERREZ, Luca COCOLIN, Luca ROLLE, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

Life cycle assessment (LCA) to move towards more environmentally friendly winegrowing

As six on the nine planetary boundaries have already been crossed, putting our safe life on Earth at risk (Rockström et al., 2024) and agriculture is significantly responsible for it (Campbell et al., 2017), viticulture, faces the challenge of reducing its environmental impacts through fundamental changes to its practices.

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Oak wood barrel tannin potential builds white wines oxidative stability and contributes to wine metabolomics fingerprint

Considerable advances have been made in the chemical characterization of wine metabolites through its holistic study using both targeted and untargeted metabolomics approach. The metabolite pool is subject to an intense molecular dialogue which reinforces the wine complexity even after bottling.

Comportamiento de la variedade “Touriga Nacional” en la Región Demarcada del Douro, en diferentes condiciones climáticas y edáficas

A Região Demarcada do Douro, oferece uma diversidade geográfica, climática e biológica (grande número de castas em cultivo) extremamente grande e complexa, originando vinhas

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.