Macrowine 2021
IVES 9 IVES Conference Series 9 Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Abstract

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines. The yeast species interact throughout the alcoholic fermentation and influence the chemical composition of the wines. Many studies have been carried out to gain an insight to the nature of these interactions, with the aim to better control the wine fermentation.

METHODS: In order to understand the population kinetics of Starm. bacillaris in mixed fermentations with S. cerevisiae and to investigate the effect of physical separation of the two species during fermentation, several experimental setups were employed. Importantly, double-compartment fermentation was carried out to elucidate the role of cell-to-cell contact in the death of Starm. bacillaris occurring during mixed fermentations. Furthermore, several strains of both Starm. bacillaris and S. cerevisiae were used, in order to get an insight into these interactions.

RESULTS: The early death of Starm. bacillaris in mixed fermentations in flasks as compared to the double-compartment fermentor, seemed to be not due to nutrients depletion or to the presence of toxic compounds, but most likely due to cell-to-cell contact induced inhibition. Nevertheless, the early death behavior as well as the extension of viability of Starm. Bacillaris in the double-compartment fermentor, depended on the individual strains of the two species tested and their combinations in couples during fermentation. These results lead to the hypothesis that the cell-to-cell contact mechanismdepends greatly on the couple Starm. bacillaris and S. cerevisiae used to conduct the fermentation process.

CONCLUSIONS:

In the future it will be necessary to make further studies in order to better investigate this aspect and to define with greater clarity how cell-to-cell contact mechanism happens and how it is regulated to be able to perform fermentations with different strains combinations and obtain wines with specific characteristics.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kalliopi Rantsiou, Vasileios ENGLEZOS,  Paola DI GIANVITO,  Luca COCOLIN, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

Grouping Vitis vinifera grapevine varieties based on their aromatic composition

Climate change is likely to impact wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir1. Amongst several changes in viticultural practices, replacing some of the planting material (i.e. clones, rootstocks and cultivars) is thought to be one of the most promising potential levers to be used for adapting to climate change. But the change of cultivars also involves the issue of protecting the region’s wine typicity. In Bordeaux (France), extensive research has been conducted on identifying meridional varieties that could be good candidates to help guard against the effects of climate change2 while less research has been done concerning their impacts on Bordeaux wine typicity.

Conservation: the best valorisation strategy for wine growing areas

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.