Macrowine 2021
IVES 9 IVES Conference Series 9 Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Abstract

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines. The yeast species interact throughout the alcoholic fermentation and influence the chemical composition of the wines. Many studies have been carried out to gain an insight to the nature of these interactions, with the aim to better control the wine fermentation.

METHODS: In order to understand the population kinetics of Starm. bacillaris in mixed fermentations with S. cerevisiae and to investigate the effect of physical separation of the two species during fermentation, several experimental setups were employed. Importantly, double-compartment fermentation was carried out to elucidate the role of cell-to-cell contact in the death of Starm. bacillaris occurring during mixed fermentations. Furthermore, several strains of both Starm. bacillaris and S. cerevisiae were used, in order to get an insight into these interactions.

RESULTS: The early death of Starm. bacillaris in mixed fermentations in flasks as compared to the double-compartment fermentor, seemed to be not due to nutrients depletion or to the presence of toxic compounds, but most likely due to cell-to-cell contact induced inhibition. Nevertheless, the early death behavior as well as the extension of viability of Starm. Bacillaris in the double-compartment fermentor, depended on the individual strains of the two species tested and their combinations in couples during fermentation. These results lead to the hypothesis that the cell-to-cell contact mechanismdepends greatly on the couple Starm. bacillaris and S. cerevisiae used to conduct the fermentation process.

CONCLUSIONS:

In the future it will be necessary to make further studies in order to better investigate this aspect and to define with greater clarity how cell-to-cell contact mechanism happens and how it is regulated to be able to perform fermentations with different strains combinations and obtain wines with specific characteristics.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kalliopi Rantsiou, Vasileios ENGLEZOS,  Paola DI GIANVITO,  Luca COCOLIN, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

Epigenetics: an innovative lever for grapevine breeding in times of climatic changes

In this video recording of the IVES science meeting 2025, Margot Berger (INRAE, UMR1287 EGFV, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France) speaks about epigenetics as an innovative lever for grapevine breeding in times of climatic changes. This presentation is based on an original article accessible for free on OENO One.

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.

Influence of grape withering on corvina and corvinone aroma composition

AIM:Valpolicella is a wine region located in Italy north-east, famous for the production of dry and sweet red wines from withered grapes, including Amarone and Recioto. The aim of this study is to understand the influence of the withering process on Corvina and Corvinone wines aroma profiles. METHODS:Wines were produced with a standard red wine winemaking protocol with Corvina and Corvinone grapes from different Valpolicella vineyards and vintages. In consideration of the local traditional practice of post-harvest withering of the grapes, wines from each vineyard were obtained from either fresh and withered grapes. Wines were analysed by Solid Phase Extraction and Solid Phase Micro Extraction gas chromatography coupled to mass spectrometry.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.