Macrowine 2021
IVES 9 IVES Conference Series 9 Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Abstract

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines. The yeast species interact throughout the alcoholic fermentation and influence the chemical composition of the wines. Many studies have been carried out to gain an insight to the nature of these interactions, with the aim to better control the wine fermentation.

METHODS: In order to understand the population kinetics of Starm. bacillaris in mixed fermentations with S. cerevisiae and to investigate the effect of physical separation of the two species during fermentation, several experimental setups were employed. Importantly, double-compartment fermentation was carried out to elucidate the role of cell-to-cell contact in the death of Starm. bacillaris occurring during mixed fermentations. Furthermore, several strains of both Starm. bacillaris and S. cerevisiae were used, in order to get an insight into these interactions.

RESULTS: The early death of Starm. bacillaris in mixed fermentations in flasks as compared to the double-compartment fermentor, seemed to be not due to nutrients depletion or to the presence of toxic compounds, but most likely due to cell-to-cell contact induced inhibition. Nevertheless, the early death behavior as well as the extension of viability of Starm. Bacillaris in the double-compartment fermentor, depended on the individual strains of the two species tested and their combinations in couples during fermentation. These results lead to the hypothesis that the cell-to-cell contact mechanismdepends greatly on the couple Starm. bacillaris and S. cerevisiae used to conduct the fermentation process.

CONCLUSIONS:

In the future it will be necessary to make further studies in order to better investigate this aspect and to define with greater clarity how cell-to-cell contact mechanism happens and how it is regulated to be able to perform fermentations with different strains combinations and obtain wines with specific characteristics.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kalliopi Rantsiou, Vasileios ENGLEZOS,  Paola DI GIANVITO,  Luca COCOLIN, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

applicazione dei metodi isotopici e dell’analisi sensoriale negli studi sull’origine dei vini

Traceability of agro-alimentary products is very important to certify their origin. This work aimed to characterize wines obtained by the same cultivar (Nero d’Avola and Fiano) – grown in regions with different soil and climate conditions during three vintages (2003-2005) – employing isotopic analyses (NMR and IRMS) and sensory analyses.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

Validation of a method for the determination of volatile compounds in in spirituous beverages using contained ethanol as a reference substance

The results of experimental studies of the method based on the usage of ethyl alcohol as an internal standard for the direct determination of volatile compounds in wines and others alcohol contained products are presented. The method was validated in terms of precision, accuracy, limits of detection and quantification (lod and loq), linearity, and robustness.

Wine microbial diversity and cross-over applications: emerging results and future perspectives

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota.