Macrowine 2021
IVES 9 IVES Conference Series 9 Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Cell-to-cell contact modulates Starmerella bacillaris early death in mixed fermentations with Saccharomyces cerevisiae in a couple-dependent way

Abstract

AIM: The diversity and complexity of the fermentation ecosystem during wine making limits the successful prediction of wine characteristics. The use of selected starter cultures has allowed a better control of the fermentation process and the production of wines with established characteristics. Among them, the use of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae yeasts has gained attention in recent years due to the fructophylic nature of the first and the ability of this inoculation protocol to reduce the acetic acid and ethanol content of the wines. The yeast species interact throughout the alcoholic fermentation and influence the chemical composition of the wines. Many studies have been carried out to gain an insight to the nature of these interactions, with the aim to better control the wine fermentation.

METHODS: In order to understand the population kinetics of Starm. bacillaris in mixed fermentations with S. cerevisiae and to investigate the effect of physical separation of the two species during fermentation, several experimental setups were employed. Importantly, double-compartment fermentation was carried out to elucidate the role of cell-to-cell contact in the death of Starm. bacillaris occurring during mixed fermentations. Furthermore, several strains of both Starm. bacillaris and S. cerevisiae were used, in order to get an insight into these interactions.

RESULTS: The early death of Starm. bacillaris in mixed fermentations in flasks as compared to the double-compartment fermentor, seemed to be not due to nutrients depletion or to the presence of toxic compounds, but most likely due to cell-to-cell contact induced inhibition. Nevertheless, the early death behavior as well as the extension of viability of Starm. Bacillaris in the double-compartment fermentor, depended on the individual strains of the two species tested and their combinations in couples during fermentation. These results lead to the hypothesis that the cell-to-cell contact mechanismdepends greatly on the couple Starm. bacillaris and S. cerevisiae used to conduct the fermentation process.

CONCLUSIONS:

In the future it will be necessary to make further studies in order to better investigate this aspect and to define with greater clarity how cell-to-cell contact mechanism happens and how it is regulated to be able to perform fermentations with different strains combinations and obtain wines with specific characteristics.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Kalliopi Rantsiou, Vasileios ENGLEZOS,  Paola DI GIANVITO,  Luca COCOLIN, Kalliopi RANTSIOU

University of Turin, DISAFA, Italy, University of Turin, DISAFA, Italy

Contact the author

Citation

Related articles…

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

Effect of pH and ethanol on Lactiplantibacillus plantarum in red must fermentation: potential use of wine lees

Wine is the result of the alcoholic fermentation (AF) of grape must. Besides AF, wine can also undergo the malolactic fermentation (MLF) driven out by lactic acid bacteria (LAB). Among LAB, Oenococcus oeni and Lactiplantibacillus plantarum are the dominant species in wine. Even if O. oeni is the most common LAB undergoing MLF in wine, due to its high tolerance to wine conditions, L. plantarum can be used to undergo MLF in must. The moderate tolerance of L. plantarum to low pH and ethanol, may compromise the fermentative process in harsh wines.

Perceptive interactions and wine typical fruity aroma 

In this study we developed a methodology to prepare aromatic reconstitutions from fractions of a wine organic extract and we assessed these reconstitutions both in wine model solution and in de- aromatized wine.

Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

GEOSPHERA s. r. l. e TERR.A.IN. CNS, forti della grande esperienza dei loro collaboratori nell’ambito delle scienze naturali, della geologia, della geofisica e dell’informatica, garantiscono risposte innovative alle problematiche della moderna agricoltura rivolgendosi direttamente ai viticoltori, ai commercianti vinicoli ed ai liberi professionisti.

S. CEREVISIAE AND O. ŒNI BIOFILMS FOR CONTINUOUS ALCOHOLIC AND MALOLACTIC FERMENTATIONS IN WINEMAKING

Biofilms are sessile microbial communities whose lifestyle confers specific properties. They can be defined as a structured community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to a surface and considered as a method of immobilisation. Immobilised microorganisms offer many advantages for industrial processes in the production of alcoholic beverages and specially increasing cell densities for a better management of fermentation rates.