Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Abstract

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry. Besides the contribution of the nitrogen source to primary metabolism, some nitrogen compounds are precursors of volatile molecules that produce aroma. The nitrogen compounds assimilated by yeast are classified as rich or poor nitrogen sources depending on how they affect the growth and the nitrogen regulation mechanisms. In S. cerevisiae, the nitrogen metabolism is well understood but less is known about these pathways in S. uvarum. The aim here is to understand the nitrogen metabolism in S. uvarum and the effects of the nitrogen source on the production of aroma volatiles at low temperature; the focus is on temperatures below 20°C since this is relevant for wine production. First, nitrogen preference was established using 10 different compounds as sole nitrogen sources for S. uvarum and S. cerevisiae: important differences were found in the efficiency of asparagine to support growth. The alcoholic fermentations done in synthetic must, showed the same pattern of nitrogen consumption in each species. Afterwards, comparative analysis of gene expression (RNAseq) of S. uvarum MTF3098 was carried out in ammonium, methionine, phenylalanine and asparagine to determine how the nitrogen source affects the expression of key genes involved in nitrogen metabolism and aroma production. The transcriptome data revealed substantial changes in expression patterns of nitrogen metabolism genes. The gene clusters with highest fold change when comparing inorganic nitrogen source (ammonium) and organic source (methionine, phenylalanine, asparagine) in S. uvarum MTF3098 were genes encoding transporters and proteins responsible for aroma synthesis; using amino acids as sole nitrogen source instead of ammonium resulted in an increased expression of this group of genes. This study increases understanding of the importance of the nitrogen source in the aroma production of Saccharomyces yeasts and broads the knowledge on S. uvarum aroma production for applications in wine industry. Ongoing work includes correlating transcriptome and volatile metabolome data to understand links between gene expression and aroma production in S. uvarum.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angela Coral Medina, Carole CAMARASA, John Morrissey, Darren Fenton

1 SPO, UMR, INRA, SupAgro, Universite de Montpellier, France 2 School of Microbiology, University College Cork, Ireland, SPO, UMR, INRA, SupAgro, Universite de Montpellier, France, School of Microbiology, University College Cork, Ireland, School of Biochemestry and Cell Biology, University College Cork, Ireland

Contact the author

Keywords

saccharomyces uvarum, nitrogen source, gene expression, aroma

Citation

Related articles…

Hidden costs of wine: quantifying environmental externalities of organic and integrated management

Agriculture is one of the largest contributors to environmental pollution and causing significant impacts on human health, ecosystems, and resource availability.

Exploring the use of high-power ultrasound in white and rosé winemaking

Since the approval in 2019 of the use of high-power ultrasound (US) in winemaking to support extractive processes from grape to must, the study of this technology in red winemaking has increased significantly, with laboratory and semi-industrial scale studies.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Long-lasting flavour perception of wines treated with oenological additives considering the individual PROP taste-phenotype

The use of oenological additives is becoming a common practice due to the technological and sensory properties they provide to the wines. However, the number of studies focused on the impact that these additives might induce on wine flavor perception during wine tasting is still quite scarce. The aim of this work was to evaluate the effect of three different types of common oenological additives: two oenotannins (ellagitannin and gallotannin) and a commercial preparation of yeast mannoproteins on the long-lasting flavor perception (aroma and astringency).

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.