Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Abstract

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry. Besides the contribution of the nitrogen source to primary metabolism, some nitrogen compounds are precursors of volatile molecules that produce aroma. The nitrogen compounds assimilated by yeast are classified as rich or poor nitrogen sources depending on how they affect the growth and the nitrogen regulation mechanisms. In S. cerevisiae, the nitrogen metabolism is well understood but less is known about these pathways in S. uvarum. The aim here is to understand the nitrogen metabolism in S. uvarum and the effects of the nitrogen source on the production of aroma volatiles at low temperature; the focus is on temperatures below 20°C since this is relevant for wine production. First, nitrogen preference was established using 10 different compounds as sole nitrogen sources for S. uvarum and S. cerevisiae: important differences were found in the efficiency of asparagine to support growth. The alcoholic fermentations done in synthetic must, showed the same pattern of nitrogen consumption in each species. Afterwards, comparative analysis of gene expression (RNAseq) of S. uvarum MTF3098 was carried out in ammonium, methionine, phenylalanine and asparagine to determine how the nitrogen source affects the expression of key genes involved in nitrogen metabolism and aroma production. The transcriptome data revealed substantial changes in expression patterns of nitrogen metabolism genes. The gene clusters with highest fold change when comparing inorganic nitrogen source (ammonium) and organic source (methionine, phenylalanine, asparagine) in S. uvarum MTF3098 were genes encoding transporters and proteins responsible for aroma synthesis; using amino acids as sole nitrogen source instead of ammonium resulted in an increased expression of this group of genes. This study increases understanding of the importance of the nitrogen source in the aroma production of Saccharomyces yeasts and broads the knowledge on S. uvarum aroma production for applications in wine industry. Ongoing work includes correlating transcriptome and volatile metabolome data to understand links between gene expression and aroma production in S. uvarum.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angela Coral Medina, Carole CAMARASA, John Morrissey, Darren Fenton

1 SPO, UMR, INRA, SupAgro, Universite de Montpellier, France 2 School of Microbiology, University College Cork, Ireland, SPO, UMR, INRA, SupAgro, Universite de Montpellier, France, School of Microbiology, University College Cork, Ireland, School of Biochemestry and Cell Biology, University College Cork, Ireland

Contact the author

Keywords

saccharomyces uvarum, nitrogen source, gene expression, aroma

Citation

Related articles…

Impact of yeast derivatives to increase the phenolic maturity and aroma intensity of wine

Using viticultural and enological techniques to increase aromatics in white wine is a prized yet challenging technique for commercial wine producers. Equally difficult are challenges encountered in hastening phenolic maturity and thereby increasing color intensity in red wines. The ability to alter organoleptic and visual properties of wines plays a decisive role in vintages in which grapes are not able to reach full maturity, which is seen increasingly more often as a result of climate change. A new, yeast-based product on the viticultural market may give the opportunity to increase sensory properties of finished wines. Manufacturer packaging claims these yeast derivatives intensify wine aromas of white grape varieties, as well as improve phenolic ripeness of red varieties, but the effects of this application have been little researched until now. The current study applied the yeast derivative, according to the manufacture’s instructions, to the leaves of both neutral and aromatic white wine varieties, as well as on structured red wine varieties. Chemical parameters and volatile aromatics were analyzed in grape musts and finished wines, and all wines were subjected to sensory analysis by a tasting panel. Collective results of all analyses showed that the application of the yeast derivative in the vineyard showed no effect across all varieties examined, and did not intensify white wine aromatics, nor improve phenolic ripeness and color intensity in red wine.

Shoot positioning: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié durant deux saisons de croissance (2002/2003 et 2003/2004) l’effet de l’orientation vertical des rameaux sur les paramètres physiologiques, végétatifs et reproductifs dans la région de Stellenbosch dans un vignoble du cépage Merlot sur 99 R conduite à espalier et taillé a cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m. L’irrigation a été appliquée quand la baie avait la dimension d’un pois et a la véraison.

Impacts of climate change on wine producer countries located north of the wine belt

Climate change poses significant challenges to the global wine sector, with cool-climate countries particularly vulnerable to its effects. The research employs a panel data analysis to investigate the impact of climate change on the wine industry in 66 countries, focusing on 11 cool-climate countries located north of the wine belt in the northern hemisphere. Utilizing data from OIV, FAO and climatic statistics from the climate change knowledge portal of the world bank spanning from 1961 to 2020, the research examines the relationship between temperature, precipitation, and wine production.

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.