Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Abstract

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry. Besides the contribution of the nitrogen source to primary metabolism, some nitrogen compounds are precursors of volatile molecules that produce aroma. The nitrogen compounds assimilated by yeast are classified as rich or poor nitrogen sources depending on how they affect the growth and the nitrogen regulation mechanisms. In S. cerevisiae, the nitrogen metabolism is well understood but less is known about these pathways in S. uvarum. The aim here is to understand the nitrogen metabolism in S. uvarum and the effects of the nitrogen source on the production of aroma volatiles at low temperature; the focus is on temperatures below 20°C since this is relevant for wine production. First, nitrogen preference was established using 10 different compounds as sole nitrogen sources for S. uvarum and S. cerevisiae: important differences were found in the efficiency of asparagine to support growth. The alcoholic fermentations done in synthetic must, showed the same pattern of nitrogen consumption in each species. Afterwards, comparative analysis of gene expression (RNAseq) of S. uvarum MTF3098 was carried out in ammonium, methionine, phenylalanine and asparagine to determine how the nitrogen source affects the expression of key genes involved in nitrogen metabolism and aroma production. The transcriptome data revealed substantial changes in expression patterns of nitrogen metabolism genes. The gene clusters with highest fold change when comparing inorganic nitrogen source (ammonium) and organic source (methionine, phenylalanine, asparagine) in S. uvarum MTF3098 were genes encoding transporters and proteins responsible for aroma synthesis; using amino acids as sole nitrogen source instead of ammonium resulted in an increased expression of this group of genes. This study increases understanding of the importance of the nitrogen source in the aroma production of Saccharomyces yeasts and broads the knowledge on S. uvarum aroma production for applications in wine industry. Ongoing work includes correlating transcriptome and volatile metabolome data to understand links between gene expression and aroma production in S. uvarum.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angela Coral Medina, Carole CAMARASA, John Morrissey, Darren Fenton

1 SPO, UMR, INRA, SupAgro, Universite de Montpellier, France 2 School of Microbiology, University College Cork, Ireland, SPO, UMR, INRA, SupAgro, Universite de Montpellier, France, School of Microbiology, University College Cork, Ireland, School of Biochemestry and Cell Biology, University College Cork, Ireland

Contact the author

Keywords

saccharomyces uvarum, nitrogen source, gene expression, aroma

Citation

Related articles…

Ripening of Mencía grape cultivar in different edaphoclimatic situations (D.O. Ribeira Sacra, Spain)

Ribeira Sacra is a Spanish Denominación de Origen (D.O.) for wines, located in Galicia, NW Spain.

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

Moderate wine consumption as part of a Mediterranean diet and lifestyle under debate

Moderate wine consumption – with the meals – represents one of the beneficial components of the traditional mediterranean diet (med diet) and a positive item in the med diet score [1,2, 3]. The med diet is considered one of the best diets in the world and the world health organisation (who) identified this eating pattern as an effective strategy to prevent non-communicable diseases (ncd), since it is associated with lower disease occurrence and all-cause mortality [4] . Numerous well-conducted epidemiological studies have also reported that light-to-moderate intake of wine/alcoholic beverages is not only related to a reduced risk of cardiovascular disease, but also to all-cause mortality.

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

Metabolic fingerprinting and qualitative attributes of two indigenous Cypriot cultivars destined for the production of ‘commandaria’: the impact of leaf removal and dehydration process

Grapes’ sun-drying is one of the most critical steps in the production of ‘Commandaria’, a dessert wine with Protected Designation of Origin that is exclusively produced in Cyprus from grapes of the two indigenous cultivars (Vitis vinifera L.), namely ‘Mavro’ and ‘Xynisteri’. Despite its significant economic importance, no data regarding the primary and secondary metabolites of the aforementioned cultivars exist.