Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Abstract

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry. Besides the contribution of the nitrogen source to primary metabolism, some nitrogen compounds are precursors of volatile molecules that produce aroma. The nitrogen compounds assimilated by yeast are classified as rich or poor nitrogen sources depending on how they affect the growth and the nitrogen regulation mechanisms. In S. cerevisiae, the nitrogen metabolism is well understood but less is known about these pathways in S. uvarum. The aim here is to understand the nitrogen metabolism in S. uvarum and the effects of the nitrogen source on the production of aroma volatiles at low temperature; the focus is on temperatures below 20°C since this is relevant for wine production. First, nitrogen preference was established using 10 different compounds as sole nitrogen sources for S. uvarum and S. cerevisiae: important differences were found in the efficiency of asparagine to support growth. The alcoholic fermentations done in synthetic must, showed the same pattern of nitrogen consumption in each species. Afterwards, comparative analysis of gene expression (RNAseq) of S. uvarum MTF3098 was carried out in ammonium, methionine, phenylalanine and asparagine to determine how the nitrogen source affects the expression of key genes involved in nitrogen metabolism and aroma production. The transcriptome data revealed substantial changes in expression patterns of nitrogen metabolism genes. The gene clusters with highest fold change when comparing inorganic nitrogen source (ammonium) and organic source (methionine, phenylalanine, asparagine) in S. uvarum MTF3098 were genes encoding transporters and proteins responsible for aroma synthesis; using amino acids as sole nitrogen source instead of ammonium resulted in an increased expression of this group of genes. This study increases understanding of the importance of the nitrogen source in the aroma production of Saccharomyces yeasts and broads the knowledge on S. uvarum aroma production for applications in wine industry. Ongoing work includes correlating transcriptome and volatile metabolome data to understand links between gene expression and aroma production in S. uvarum.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angela Coral Medina, Carole CAMARASA, John Morrissey, Darren Fenton

1 SPO, UMR, INRA, SupAgro, Universite de Montpellier, France 2 School of Microbiology, University College Cork, Ireland, SPO, UMR, INRA, SupAgro, Universite de Montpellier, France, School of Microbiology, University College Cork, Ireland, School of Biochemestry and Cell Biology, University College Cork, Ireland

Contact the author

Keywords

saccharomyces uvarum, nitrogen source, gene expression, aroma

Citation

Related articles…

Laying footprints on a new path: proper accounting of biogenic fluxes makes viticulture carbon neutral

To limit the acceleration of global warming we need to reduce greenhouse gases emissions (GHG), making our production processes more carbon-efficient and optimizing absorptions.

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

Downscaling of remote sensing time series: thermal zone classification approach in Gironde region

In viticulture, the challenges of local climate modelling are multiple: taking into account the local environment, fine temporal and spatial scales, reliable time series of climate data, ease of implementation and reproducibility of the method. At the local scale, recent studies have demonstrated the contribution of spatialization methods for ground-based climate observation data considering topographic factors such as altitude, slope, aspect, and geographic coordinates (Le Roux et al, 2017; De Rességuier et al, 2020). However, these studies have shown questions in terms of the reproducibility and sustainability of this type of climate study. In this context, we evaluated the potential of MODIS thermal satellite images validated with ground-based climate data (Morin et al, 2020). Previous studies have been encouraging, but questions remain to be explored at the regional scale, particularly in the dynamics of the massive use of bioclimatic indices to classify the climate of wine regions. The results at the local scale were encouraging, but this approach was tested in the current study at the regional scale. Several objectives were set: 1) to evaluate the downscaling method for land surface temperature time series, 2) to identify regional thermal structure variations. We used weekly minimum and maximum surface temperature time series acquired by MODIS satellites at a spatial resolution of 1000 m and downscaled at 500 m using topographical variables. Two types of analyses were performed:

One-year aging of a Sangiovese red wine in tanks of different materials: effect on chemical and sensory characteristics

The aim of this study was to evaluate how the different tank materials could affect the chemical and sensory characteristics of a Sangiovese red wine during one-year aging.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.