Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Abstract

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry. Besides the contribution of the nitrogen source to primary metabolism, some nitrogen compounds are precursors of volatile molecules that produce aroma. The nitrogen compounds assimilated by yeast are classified as rich or poor nitrogen sources depending on how they affect the growth and the nitrogen regulation mechanisms. In S. cerevisiae, the nitrogen metabolism is well understood but less is known about these pathways in S. uvarum. The aim here is to understand the nitrogen metabolism in S. uvarum and the effects of the nitrogen source on the production of aroma volatiles at low temperature; the focus is on temperatures below 20°C since this is relevant for wine production. First, nitrogen preference was established using 10 different compounds as sole nitrogen sources for S. uvarum and S. cerevisiae: important differences were found in the efficiency of asparagine to support growth. The alcoholic fermentations done in synthetic must, showed the same pattern of nitrogen consumption in each species. Afterwards, comparative analysis of gene expression (RNAseq) of S. uvarum MTF3098 was carried out in ammonium, methionine, phenylalanine and asparagine to determine how the nitrogen source affects the expression of key genes involved in nitrogen metabolism and aroma production. The transcriptome data revealed substantial changes in expression patterns of nitrogen metabolism genes. The gene clusters with highest fold change when comparing inorganic nitrogen source (ammonium) and organic source (methionine, phenylalanine, asparagine) in S. uvarum MTF3098 were genes encoding transporters and proteins responsible for aroma synthesis; using amino acids as sole nitrogen source instead of ammonium resulted in an increased expression of this group of genes. This study increases understanding of the importance of the nitrogen source in the aroma production of Saccharomyces yeasts and broads the knowledge on S. uvarum aroma production for applications in wine industry. Ongoing work includes correlating transcriptome and volatile metabolome data to understand links between gene expression and aroma production in S. uvarum.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angela Coral Medina, Carole CAMARASA, John Morrissey, Darren Fenton

1 SPO, UMR, INRA, SupAgro, Universite de Montpellier, France 2 School of Microbiology, University College Cork, Ireland, SPO, UMR, INRA, SupAgro, Universite de Montpellier, France, School of Microbiology, University College Cork, Ireland, School of Biochemestry and Cell Biology, University College Cork, Ireland

Contact the author

Keywords

saccharomyces uvarum, nitrogen source, gene expression, aroma

Citation

Related articles…

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Seasonal dynamics of water and sugar compartmentalization in grape clusters under deficit irrigation

Water stress triggers functional compartmentalization in grapevines, influencing how resources are allocated to different plant organs.

Comparison of various storage conditions to preserve polyphenols in red-grape pomace

Red grape pomace, a waste from wine production, can be valorised by extracting polyphenols, high-added value compounds used in cosmetics or oenology. For use at an industrial level, using green extraction techniques, pomace need to be stored before being processed. The aim of this study is to test various storage conditions in order to maintain high level of polyphenols over 180 days, while keeping storage cost economically interesting. In a first step, different storage conditions (ambient temperature or cooled (4°C) temperature, anaerobic (saturation with N2) or aerobic conditions, and addition of sulphur dioxide (SO2)) were compared on small samples (1 kg) packed in plastic pockets. The quality of storage was assessed by following the optical density of the pomace extract at 280 nm (DO 280 expressed as mg/l eq gallic acid), which is an indication of the amount of remaining extractable polyphenols.

Contribution of grape seeds to evolution of acetaldehyde, pigments and tannins reactive towards salivary proteins of red wine over time

This study investigated the impact of the gsk/gse ratio on the evolution of acetaldehyde and of major phenolic compounds of aglianico wine in wine like solution and real wine. Four model solutions and the correspondant control wines were prepared. The natural weight ratio between grape skins and seeds was determined on the real grapes, and a control wine was obtained from those.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].