Macrowine 2021
IVES 9 IVES Conference Series 9 Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Abstract

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition. A promising alternative approach could be the use of yeast starter cultures high-producers of this compound in situ, during the fermentation process, in substitution of external GSH addition. Since this activity in non-Saccharomyces yeasts is currently poorly investigated, the aim of this research was to evaluate the ability of three strains of non-Saccharomyces (NS) yeasts to produce GSH, both in synthetic media and in fresh grape must.

METHODS: Lachancea thermotolerans SOL13, Metschnikowia sp. FIANO12, and Starmerella bacillaris MALV45 were tested in single or sequential inoculations,with Saccharomyces cerevisiae EC1118, in synthetic grape juice (SGJ) or in Pinot Grigio grape must, under static conditions, or in a medium optimized for GSH production (MGSH) in agitation (200 rpm). GSH concentration was determined using the Glutathione Assay Kit (Sigma-Aldrich). Population dynamics was evaluated by plate count and biomass dry weight, and fermentation kinetics through weight loss measurement.

RESULTS: A variability in GSH production was found among individual strains and growth conditions. Metschnikowia sp. FIANO12 showed the highest intracellular accumulation of GSH when cultivated alone in both synthetic media, and, as expected, higher levels in the optimized MGSH than in SGJ (4.59 vs. 0.19 nmol GSH/mg cells, respectively). In wine, fermentations with S. bacillaris MALV45 had the highest concentration of intracellular GSH, but the lowest content of wine-dissolved GSH. The maximum level of extracellular GSH (21 mg/L) was obtained in the sequential fermentation with L. thermotolerans SOL13, a significant increase compared to the control singly inoculated with S. cerevisiae.

CONCLUSIONS:

This study highlights a new potential interesting feature of NS yeasts to positively modify wine composition. The tested native strains, with previously demonstrated interesting oenological traits, showed a good capacity to accumulate GSH and to increase the concentration of this antioxidant compound in wine. Thus, the strategy of multi-starter fermentation can be a valuable tool to achieve a lower input winemaking. Future investigations are needed to assess the long-term stability of wine made from multi-starter fermentations with NS yeasts producers of GSH.ACKNOWLEDGEMENTS: We thank Nicolò Bersani for laboratory assistance.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Renato L. Binati, Wilson J.F. LEMOS JUNIOR, Sandra TORRIANI

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

Glutathione production, multi-starter fermentation, non-saccharomyces yeasts, saccharomycescerevisiae, winemaking, wine quality

Citation

Related articles…

Selecting green cover species in the under-trellis zone of Lower Austrian vineyards

The under-trellis zone of vineyards is a sensitive area through which vines cover a significant portion of their nutrient and water needs. Mechanical and chemical methods are applied to suppress competing and tall-growing weeds to ensure optimal vine growth conditions. In addition to higher operating costs and depending on the soil conditions, these practices might lead to a long-term reduction in soil fertility and biodiversity. The presented study aims to analyse the suitability and interspecies competition of a selected green cover mixture of five local herbaceous species as potential green cover mixture in the under-trellis area of Lower Austrian vineyards.

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

Comparison of aroma-related compounds of carbonic maceration and traditional young red winemaking in case of Merlot by means of targeted metabolomic approach

Winemaking decisions and techniques are known to affect the final aromatic composition of red wines. Winemakers put a constant effort into the improved controlling of vinification procedures to achieve better quality. Anyway an increased customer’s demand for uniqueness is often forcing them to adjust and offer new and new interesting products. To support the producers, an improved knowledge on aromatic potential as affected by classical and alternative strategies is needed.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.

Utilization of remote sensing technology to detect riesling vineyard variability

ineyard blocks can vary spatially with respect to several viticulturally significant qualities such as soil variables, vine vigor, vine physiology