Macrowine 2021
IVES 9 IVES Conference Series 9 Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Abstract

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition. A promising alternative approach could be the use of yeast starter cultures high-producers of this compound in situ, during the fermentation process, in substitution of external GSH addition. Since this activity in non-Saccharomyces yeasts is currently poorly investigated, the aim of this research was to evaluate the ability of three strains of non-Saccharomyces (NS) yeasts to produce GSH, both in synthetic media and in fresh grape must.

METHODS: Lachancea thermotolerans SOL13, Metschnikowia sp. FIANO12, and Starmerella bacillaris MALV45 were tested in single or sequential inoculations,with Saccharomyces cerevisiae EC1118, in synthetic grape juice (SGJ) or in Pinot Grigio grape must, under static conditions, or in a medium optimized for GSH production (MGSH) in agitation (200 rpm). GSH concentration was determined using the Glutathione Assay Kit (Sigma-Aldrich). Population dynamics was evaluated by plate count and biomass dry weight, and fermentation kinetics through weight loss measurement.

RESULTS: A variability in GSH production was found among individual strains and growth conditions. Metschnikowia sp. FIANO12 showed the highest intracellular accumulation of GSH when cultivated alone in both synthetic media, and, as expected, higher levels in the optimized MGSH than in SGJ (4.59 vs. 0.19 nmol GSH/mg cells, respectively). In wine, fermentations with S. bacillaris MALV45 had the highest concentration of intracellular GSH, but the lowest content of wine-dissolved GSH. The maximum level of extracellular GSH (21 mg/L) was obtained in the sequential fermentation with L. thermotolerans SOL13, a significant increase compared to the control singly inoculated with S. cerevisiae.

CONCLUSIONS:

This study highlights a new potential interesting feature of NS yeasts to positively modify wine composition. The tested native strains, with previously demonstrated interesting oenological traits, showed a good capacity to accumulate GSH and to increase the concentration of this antioxidant compound in wine. Thus, the strategy of multi-starter fermentation can be a valuable tool to achieve a lower input winemaking. Future investigations are needed to assess the long-term stability of wine made from multi-starter fermentations with NS yeasts producers of GSH.ACKNOWLEDGEMENTS: We thank Nicolò Bersani for laboratory assistance.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Renato L. Binati, Wilson J.F. LEMOS JUNIOR, Sandra TORRIANI

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

Glutathione production, multi-starter fermentation, non-saccharomyces yeasts, saccharomycescerevisiae, winemaking, wine quality

Citation

Related articles…

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Les sols du cru de Bonnezeaux, Thouarcé, Anjou, France

Le cru de Bonnezeaux est une des appellations prestigieuses des vins liquoreux et moelleux des Coteaux du Layon et sa réputation est ancienne. L’INAO a effectué sa délimitation en 1953. Le vignoble est situé au nord de la ville de Thouarcé et au sud du village de Bonnezeaux, le long du versant rive droite du Layon, exposé au sud-ouest. La superficie du vignoble est de 156 ha.

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Le manque de connaissances concernant la physiologie de la maturation du raisin a longtemps interdit d’interpréter l’effet du terroir ou du millésime sur la qualité des vendanges en termes moléculaires. L’hypothèse selon laquelle c’est la perméabilité membranaire qui contrôlerait le sens comme l’intensité du stockage des acides est pourtant déjà ancienne (1). L’étude du transport des acides organiques et de son coût énergétique permet d’avancer certaines hypothèses concemant les sites potentiels de la régulation du contenu en sucres et acides du raisin sous l’effet de paramètres environnementaux.