Macrowine 2021
IVES 9 IVES Conference Series 9 Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Abstract

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition. A promising alternative approach could be the use of yeast starter cultures high-producers of this compound in situ, during the fermentation process, in substitution of external GSH addition. Since this activity in non-Saccharomyces yeasts is currently poorly investigated, the aim of this research was to evaluate the ability of three strains of non-Saccharomyces (NS) yeasts to produce GSH, both in synthetic media and in fresh grape must.

METHODS: Lachancea thermotolerans SOL13, Metschnikowia sp. FIANO12, and Starmerella bacillaris MALV45 were tested in single or sequential inoculations,with Saccharomyces cerevisiae EC1118, in synthetic grape juice (SGJ) or in Pinot Grigio grape must, under static conditions, or in a medium optimized for GSH production (MGSH) in agitation (200 rpm). GSH concentration was determined using the Glutathione Assay Kit (Sigma-Aldrich). Population dynamics was evaluated by plate count and biomass dry weight, and fermentation kinetics through weight loss measurement.

RESULTS: A variability in GSH production was found among individual strains and growth conditions. Metschnikowia sp. FIANO12 showed the highest intracellular accumulation of GSH when cultivated alone in both synthetic media, and, as expected, higher levels in the optimized MGSH than in SGJ (4.59 vs. 0.19 nmol GSH/mg cells, respectively). In wine, fermentations with S. bacillaris MALV45 had the highest concentration of intracellular GSH, but the lowest content of wine-dissolved GSH. The maximum level of extracellular GSH (21 mg/L) was obtained in the sequential fermentation with L. thermotolerans SOL13, a significant increase compared to the control singly inoculated with S. cerevisiae.

CONCLUSIONS:

This study highlights a new potential interesting feature of NS yeasts to positively modify wine composition. The tested native strains, with previously demonstrated interesting oenological traits, showed a good capacity to accumulate GSH and to increase the concentration of this antioxidant compound in wine. Thus, the strategy of multi-starter fermentation can be a valuable tool to achieve a lower input winemaking. Future investigations are needed to assess the long-term stability of wine made from multi-starter fermentations with NS yeasts producers of GSH.ACKNOWLEDGEMENTS: We thank Nicolò Bersani for laboratory assistance.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Renato L. Binati, Wilson J.F. LEMOS JUNIOR, Sandra TORRIANI

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

Glutathione production, multi-starter fermentation, non-saccharomyces yeasts, saccharomycescerevisiae, winemaking, wine quality

Citation

Related articles…

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Staying hydrated – not easy when it’s hot!

Heat and drought episodes during the growing season are becoming more frequent and more severe in many of the world’s grape‐growing regions

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].