Macrowine 2021
IVES 9 IVES Conference Series 9 Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

Abstract

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition. A promising alternative approach could be the use of yeast starter cultures high-producers of this compound in situ, during the fermentation process, in substitution of external GSH addition. Since this activity in non-Saccharomyces yeasts is currently poorly investigated, the aim of this research was to evaluate the ability of three strains of non-Saccharomyces (NS) yeasts to produce GSH, both in synthetic media and in fresh grape must.

METHODS: Lachancea thermotolerans SOL13, Metschnikowia sp. FIANO12, and Starmerella bacillaris MALV45 were tested in single or sequential inoculations,with Saccharomyces cerevisiae EC1118, in synthetic grape juice (SGJ) or in Pinot Grigio grape must, under static conditions, or in a medium optimized for GSH production (MGSH) in agitation (200 rpm). GSH concentration was determined using the Glutathione Assay Kit (Sigma-Aldrich). Population dynamics was evaluated by plate count and biomass dry weight, and fermentation kinetics through weight loss measurement.

RESULTS: A variability in GSH production was found among individual strains and growth conditions. Metschnikowia sp. FIANO12 showed the highest intracellular accumulation of GSH when cultivated alone in both synthetic media, and, as expected, higher levels in the optimized MGSH than in SGJ (4.59 vs. 0.19 nmol GSH/mg cells, respectively). In wine, fermentations with S. bacillaris MALV45 had the highest concentration of intracellular GSH, but the lowest content of wine-dissolved GSH. The maximum level of extracellular GSH (21 mg/L) was obtained in the sequential fermentation with L. thermotolerans SOL13, a significant increase compared to the control singly inoculated with S. cerevisiae.

CONCLUSIONS:

This study highlights a new potential interesting feature of NS yeasts to positively modify wine composition. The tested native strains, with previously demonstrated interesting oenological traits, showed a good capacity to accumulate GSH and to increase the concentration of this antioxidant compound in wine. Thus, the strategy of multi-starter fermentation can be a valuable tool to achieve a lower input winemaking. Future investigations are needed to assess the long-term stability of wine made from multi-starter fermentations with NS yeasts producers of GSH.ACKNOWLEDGEMENTS: We thank Nicolò Bersani for laboratory assistance.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Renato L. Binati, Wilson J.F. LEMOS JUNIOR, Sandra TORRIANI

Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy, Department of Biotechnology, University of Verona, Italy

Contact the author

Keywords

Glutathione production, multi-starter fermentation, non-saccharomyces yeasts, saccharomycescerevisiae, winemaking, wine quality

Citation

Related articles…

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack.

Intra-vineyard spatial variability explored over multiple seasons by sensor-based techniques in the Valpolicella area

The identification and management of intra-vineyard variability are key to precision viticulture, and sensors have been proven to be highly efficient tools for detecting these variations.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.