Macrowine 2021
IVES 9 IVES Conference Series 9 Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Abstract

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

METHODS: Twelve wines were obtained from fermentations of Chardonnay musts led by twelve different commercial wine yeast strains of S. cerevisiae. In order to establish a possible link between sensory profiles and metabolic signatures, Ultra High Resolution Mass Spectrometry analysis of non-volatile compounds and Gaz Chromatography coupled to Mass Spectrometry detection of volatile compounds, sensory analysis and chemometrics were used in combination.

RESULTS: Wines were clearly discriminated, according to non-volatile, volatile and sensory analyses, despite the similar fermentation kinetics. Three groups of wines, described by similar aromatic descriptors such as fruity, vegetable and apple, were highlighted by the sensory analyses. The profiles of wines from the different groups were characterized based on 35 volatile compounds belonging to esters, medium chain fatty acids, superior alcohols and terpenes. Finally, metabolomics analyses revealed a non volatile composition specific to each wine, with biomarkers specific to each wine yeast strain of S. cerevisiae.

CONCLUSIONS:

The final composition of the wine is intimately linked to the specific production of metabolites by each strains of S. cerevisiae. The combination of analytical and sensory analyses allowed us to discriminate and characterized wines from the twelve strains of S. cerevisiae.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fanny Bordet, Chloé ROULLIER-GALL, Jordi BALLESTER, Régis GOUGEON, Philippe SCHMITT-KOPPLIN, Hervé ALEXANDRE, Anne JULIEN-ORTIZ

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France Lallemand SAS, 19 rue des Briquetiers, Blagnac, France, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France Stephania VICHI, University of Barcelona, Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), Santa Coloma de Gramenet, Spain, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Lallemand SAS, 19 rue des Briquetiers, Blagnac, France , German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France

Contact the author

Keywords

yeast saccharomyces cerevisiae-wine- metabolomic-volatile compounds-sensory analysis

Citation

Related articles…

Kinetic study of browning caused by laccase activity using different substrates

To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

Modeling viticultural landscapes: a GIS analysis of the viticultural potential in the Rogue Valley of Oregon

Terroir is a holistic concept that relates to both environmental and cultural factors that together influence the grape growing to wine production continuum. The physical factors that influence the process include matching a given grape variety to its ideal climate along with optimum site characteristics of elevation, slope, aspect, and soil

La place du terroir dans le processus de patrimonialisation : l’exemple des paysages culturels viticoles du patrimoine mondial de l’Unesco

Eleven wine-growing sites are now on the UNESCO World Heritage List as Cultural Landscapes. If the viticultural character of these sites constitutes the main argument for the demonstration of their heritage value, the terroir and its biophysical and environmental characteristics tend however to appear in a minor mode compared to the aesthetic and cultural dimensions. In other words, the “specific characteristics of the soil, topography, climate, landscape and biodiversity” (OIV definition) are most often used as descriptive elements in the presentation of the sites, but it is more the aesthetic, historical,

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.