Macrowine 2021
IVES 9 IVES Conference Series 9 Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Abstract

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

METHODS: Twelve wines were obtained from fermentations of Chardonnay musts led by twelve different commercial wine yeast strains of S. cerevisiae. In order to establish a possible link between sensory profiles and metabolic signatures, Ultra High Resolution Mass Spectrometry analysis of non-volatile compounds and Gaz Chromatography coupled to Mass Spectrometry detection of volatile compounds, sensory analysis and chemometrics were used in combination.

RESULTS: Wines were clearly discriminated, according to non-volatile, volatile and sensory analyses, despite the similar fermentation kinetics. Three groups of wines, described by similar aromatic descriptors such as fruity, vegetable and apple, were highlighted by the sensory analyses. The profiles of wines from the different groups were characterized based on 35 volatile compounds belonging to esters, medium chain fatty acids, superior alcohols and terpenes. Finally, metabolomics analyses revealed a non volatile composition specific to each wine, with biomarkers specific to each wine yeast strain of S. cerevisiae.

CONCLUSIONS:

The final composition of the wine is intimately linked to the specific production of metabolites by each strains of S. cerevisiae. The combination of analytical and sensory analyses allowed us to discriminate and characterized wines from the twelve strains of S. cerevisiae.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fanny Bordet, Chloé ROULLIER-GALL, Jordi BALLESTER, Régis GOUGEON, Philippe SCHMITT-KOPPLIN, Hervé ALEXANDRE, Anne JULIEN-ORTIZ

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France Lallemand SAS, 19 rue des Briquetiers, Blagnac, France, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France Stephania VICHI, University of Barcelona, Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), Santa Coloma de Gramenet, Spain, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Lallemand SAS, 19 rue des Briquetiers, Blagnac, France , German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France

Contact the author

Keywords

yeast saccharomyces cerevisiae-wine- metabolomic-volatile compounds-sensory analysis

Citation

Related articles…

An alternative for reducing calcium in wine and lowering the risk of insoluble salt formation

Wine minerals, including calcium, derive mainly from grape berry extraction, but they could also arise from winemaking additives, processing aids, and other sources.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

NEW INSIGHTS INTO VOLATILE SULPHUR COMPOUNDS SCALPING ON MICROAGGLOMERATED WINE CLOSURES

The evolution of wine during bottle ageing has been of great interest to ensure consistent quality over time. While the role of wine closures on the amount of oxygen is well-known [1], closures could also play other roles such as the scalping phenomenon of flavour compounds. Flavour scalping has been described as the sorption of flavour compounds by the packaging material, which could result in losses of flavour intensity. It has been reported in the literature that volatile sulphur compounds (VSC) can be scalped on wine closures depending on the type of closure (traditional and agglomerated cork, screw-cap, synthetic [2]).