Macrowine 2021
IVES 9 IVES Conference Series 9 Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Abstract

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

METHODS: Twelve wines were obtained from fermentations of Chardonnay musts led by twelve different commercial wine yeast strains of S. cerevisiae. In order to establish a possible link between sensory profiles and metabolic signatures, Ultra High Resolution Mass Spectrometry analysis of non-volatile compounds and Gaz Chromatography coupled to Mass Spectrometry detection of volatile compounds, sensory analysis and chemometrics were used in combination.

RESULTS: Wines were clearly discriminated, according to non-volatile, volatile and sensory analyses, despite the similar fermentation kinetics. Three groups of wines, described by similar aromatic descriptors such as fruity, vegetable and apple, were highlighted by the sensory analyses. The profiles of wines from the different groups were characterized based on 35 volatile compounds belonging to esters, medium chain fatty acids, superior alcohols and terpenes. Finally, metabolomics analyses revealed a non volatile composition specific to each wine, with biomarkers specific to each wine yeast strain of S. cerevisiae.

CONCLUSIONS:

The final composition of the wine is intimately linked to the specific production of metabolites by each strains of S. cerevisiae. The combination of analytical and sensory analyses allowed us to discriminate and characterized wines from the twelve strains of S. cerevisiae.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fanny Bordet, Chloé ROULLIER-GALL, Jordi BALLESTER, Régis GOUGEON, Philippe SCHMITT-KOPPLIN, Hervé ALEXANDRE, Anne JULIEN-ORTIZ

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France Lallemand SAS, 19 rue des Briquetiers, Blagnac, France, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France Stephania VICHI, University of Barcelona, Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), Santa Coloma de Gramenet, Spain, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Lallemand SAS, 19 rue des Briquetiers, Blagnac, France , German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France

Contact the author

Keywords

yeast saccharomyces cerevisiae-wine- metabolomic-volatile compounds-sensory analysis

Citation

Related articles…

Longevity and moderate wine consumption – can guidelines provide practical advice?

Conflicting messages about the consumption of alcoholic beverages – including wine – continue to dominate the media, causing increasing uncertainty among consumers and health professionals.

Sustainable fertilisation of the vineyard in Galicia (Spain)

Excessive fertilization of the vineyard leads to low quality grapes, increased costs and a negative impact on the environment. In order to establish an integrated management system aimed at a sustainable fertilization of the vineyards, nutritional reference levels were established. For this purpose, 30 representative vineyards of the Albariño variety were studied, in which soil and petiole analyses were carried out for two years and grape yield and quality at harvest were measured. In both years of study, soil pH, calcium, sodium and cation exchange capacity were positively correlated with calcium content and negatively correlated with manganese in grapes. Irrigated vineyards had higher levels of aluminium in soil and lower levels of calcium in petiole. Climatic conditions were very different in the years of the study. The year 2019 was colder than usual, in 2020 there was a marked water stress with high summer temperatures. This resulted in medium-high acidity in grapes in 2019 and low acidity in 2020, with sugar levels being similar both years. A very marked decrease in must amino nitrogen was observed in 2020, with ammonia nitrogen remaining stable. The correlation of acidity and sugar values in grapes with soil and petiole analysis data made it possible to establish reference levels for the nutritional diagnosis of the Albariño variety in this region. Based on these results, an easy-to-use TIC application is currently being created for grapegrowers, aimed at improving the sustainability of the vineyard through reasoned fertilization. This study has now been extended to other Galician vine varieties.

Determination of the maturity status of white grape berries (Vitis vinifera L. cv Chenin) through physical measurements

La véraison, stade intermédiaire du développement de la baie de raisin, correspond au début de la maturation. Aux modifications de coloration de la pellicule sont associées une perte de fermeté, une diminution de l’acidité et une augmentation des teneurs en sucres et pigments ainsi que du volume de la baie. Le stade de véraison des cépages blancs reste difficile à apprécier visuellement. Son évaluation par palpation est subjective et donc sujette à caution.

IMPACT OF CLIMATIC ZONES ON THE AROMATIC PROFILE OF CORVINA WINES IN THE VALPOLICELLA REGION

In Italy, in the past two decades, the rate of temperature increases (0.0369 °C per year) was slightly higher compared to the world average (0.0313 °C per year). It has also been indicated that the number and intensity of heat waves have increased considerably in the last decades. (IEA, 2022). Viticultural zones can be classified with climatic indexes. Huglin’s index (HI) considers the temperature in a definite area and has been considered as reliable to evaluate the thermal suitability for winegrape production (Zhang et al., 2023).

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression