Macrowine 2021
IVES 9 IVES Conference Series 9 Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Abstract

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

METHODS: Twelve wines were obtained from fermentations of Chardonnay musts led by twelve different commercial wine yeast strains of S. cerevisiae. In order to establish a possible link between sensory profiles and metabolic signatures, Ultra High Resolution Mass Spectrometry analysis of non-volatile compounds and Gaz Chromatography coupled to Mass Spectrometry detection of volatile compounds, sensory analysis and chemometrics were used in combination.

RESULTS: Wines were clearly discriminated, according to non-volatile, volatile and sensory analyses, despite the similar fermentation kinetics. Three groups of wines, described by similar aromatic descriptors such as fruity, vegetable and apple, were highlighted by the sensory analyses. The profiles of wines from the different groups were characterized based on 35 volatile compounds belonging to esters, medium chain fatty acids, superior alcohols and terpenes. Finally, metabolomics analyses revealed a non volatile composition specific to each wine, with biomarkers specific to each wine yeast strain of S. cerevisiae.

CONCLUSIONS:

The final composition of the wine is intimately linked to the specific production of metabolites by each strains of S. cerevisiae. The combination of analytical and sensory analyses allowed us to discriminate and characterized wines from the twelve strains of S. cerevisiae.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fanny Bordet, Chloé ROULLIER-GALL, Jordi BALLESTER, Régis GOUGEON, Philippe SCHMITT-KOPPLIN, Hervé ALEXANDRE, Anne JULIEN-ORTIZ

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France Lallemand SAS, 19 rue des Briquetiers, Blagnac, France, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France Stephania VICHI, University of Barcelona, Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), Santa Coloma de Gramenet, Spain, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Lallemand SAS, 19 rue des Briquetiers, Blagnac, France , German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France

Contact the author

Keywords

yeast saccharomyces cerevisiae-wine- metabolomic-volatile compounds-sensory analysis

Citation

Related articles…

Using NIR/SWIR hyperspectral camera mounted on a UAV to assess grapevine water status in a variably irrigated vineyard

Vineyards face climate change, increasing temperatures, and drought affecting vine water status. Water deficit affects plant physiology and can ultimately decrease yield and grape quality when it is not well managed. Monitoring vine water status and irrigation can help growers better manage their vineyards.

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

Zoning methods in relation to the plant

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances.

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.