Macrowine 2021
IVES 9 IVES Conference Series 9 Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

Abstract

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

METHODS: Twelve wines were obtained from fermentations of Chardonnay musts led by twelve different commercial wine yeast strains of S. cerevisiae. In order to establish a possible link between sensory profiles and metabolic signatures, Ultra High Resolution Mass Spectrometry analysis of non-volatile compounds and Gaz Chromatography coupled to Mass Spectrometry detection of volatile compounds, sensory analysis and chemometrics were used in combination.

RESULTS: Wines were clearly discriminated, according to non-volatile, volatile and sensory analyses, despite the similar fermentation kinetics. Three groups of wines, described by similar aromatic descriptors such as fruity, vegetable and apple, were highlighted by the sensory analyses. The profiles of wines from the different groups were characterized based on 35 volatile compounds belonging to esters, medium chain fatty acids, superior alcohols and terpenes. Finally, metabolomics analyses revealed a non volatile composition specific to each wine, with biomarkers specific to each wine yeast strain of S. cerevisiae.

CONCLUSIONS:

The final composition of the wine is intimately linked to the specific production of metabolites by each strains of S. cerevisiae. The combination of analytical and sensory analyses allowed us to discriminate and characterized wines from the twelve strains of S. cerevisiae.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Fanny Bordet, Chloé ROULLIER-GALL, Jordi BALLESTER, Régis GOUGEON, Philippe SCHMITT-KOPPLIN, Hervé ALEXANDRE, Anne JULIEN-ORTIZ

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France Lallemand SAS, 19 rue des Briquetiers, Blagnac, France, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000 Dijon, France Stephania VICHI, University of Barcelona, Nutrition, Food Science and Gastronomy Department, INSA – XaRTA (Catalonian Reference Network on Food Technology), Santa Coloma de Gramenet, Spain, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France, Lallemand SAS, 19 rue des Briquetiers, Blagnac, France , German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR, Institut Universitaire de la Vigne et du Vin, Jules Guyot, France

Contact the author

Keywords

yeast saccharomyces cerevisiae-wine- metabolomic-volatile compounds-sensory analysis

Citation

Related articles…

Characterization of the adaptive mechanisms of grapevine rootstocks to iron deficiency induced by lime stress

Iron (Fe) deficiency is one of the important nutritional disorders for grapevine growing in alkaline and calcareous soils. Although Fe is an abundant element in soil, several factors limiting its availability, particularly the high levels of calcium carbonate or bicarbonate in soil, leading to a remarkable reduction in grapevine growth and productivity. The use of Fe chlorosis-tolerant rootstocks seems to be a cost-effective and efficient way to maintain Fe balance. Morphological and physiological changes occur in plants to cope with low Fe availability, including enhancement of ferric chelate reductase activity and altering root system by increasing lateral roots and root hairs.

Eugenol:  a new marker of hybrid vines? The case study of Baco Blanc in Armagnac

Nowadays, winemaking is dealing with great challenges, notably climate change, disease resistance and low pesticide inputs, desire for more sustainable agricultural productions and permanent changing of consumer preference. Trying to propose practice improvements, scientists are exploring vine hybridization a paradoxically old but still actual way to take up such challenges

Color stabilization properties of oenological tannins

The use of oenological tannins is authorized for many years by the OIV and advised for color stabilization. For this reason, winemakers look for a better understanding of tannins/anthocyanins interactions to produce deeply colored wines with great color stability during aging.

The Pampa and the vineyard: gaucho´s natural and symbolic aspects in the identity´s constitution of “Vinhos da Campanha”’s terroir – RS/Brasil

The wine region of “Vinhos da Campanha” is located in southern Brazil, on the Uruguay borderline. The colonization’s process in the region was characterized by territorial disputes between Portuguese

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.