Macrowine 2021
IVES 9 IVES Conference Series 9 A microbial overview of txakoli wine: the case of three appellations of origin

A microbial overview of txakoli wine: the case of three appellations of origin

Abstract

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites. Our analysis included Txakoli vineyards from three appellations of origin: Bizkaiko, Getariako, and Arabako Txakolina D.O.To describe the microbial composition, we sequenced using next generation sequencing the v4 domain of the 16S rRNA gene from 41 vineyard soils and grapes collected in 2016 and 2017. Metadata information (slope, orientation, soil edaphic properties, grape physical factors, etc.) was also collected and used to identify the potential environmental and factors responsible for the differences in the microbial composition of soils and grapes.Soil pH significantly associated with differences in soil bacterial composition, grouping the 41 vineyards into 5 clusters, regardless of vintage or appellation. The historical land usage of the properties was found to be also a significant factor determining soil bacterial composition. Interestingly, the bacterial composition of grape berries significantly depended on rootstock type, supporting a strong influence of the rootstock genotype on the fruit-microbial associations. When removing rootstock as a factor, sugar content and pH significantly correlated with microbial composition differences between sites, revealing grape maturity as an additional important factor that drives microbial associations in the fruit.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Igor Baroja, Elena GARCÍA DE LA PEÑA, Iratxe ZARRAONAINDIA

University of the Basque Country, Ardoatek Dario, CANTU, University of California, Davis  And one, ESTONBA, University of the Basque Country, University of the Basque Country IKERBASQUE

Contact the author

Keywords

vineyard, microbiome, miseq, wine, txakoli

Citation

Related articles…

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

The Soil Component of Terroir

Evidence for a specific effect of soil mineral composition on wine character is largely anecdotal. However, soil potassium supply to the vine must be properly balanced between deficiency and excess for good fruit quality.

Predicting consumers’ organic wine consumption behaviour

Organic wine production and consumption is one of the sustainable practices contributing to a number of sustainable development goals (SDGs).

Regional impact on rootstock/scion mediated methoxypyrazine accumulation in rachis

Aim: To investigate the impact of Geographical Indications (GI) of South Australia on the rootstock/scion-mediated methoxypyrazine accumulation within the rachis of Shiraz and Cabernet Sauvignon. 

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.