Macrowine 2021
IVES 9 IVES Conference Series 9 A microbial overview of txakoli wine: the case of three appellations of origin

A microbial overview of txakoli wine: the case of three appellations of origin

Abstract

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites. Our analysis included Txakoli vineyards from three appellations of origin: Bizkaiko, Getariako, and Arabako Txakolina D.O.To describe the microbial composition, we sequenced using next generation sequencing the v4 domain of the 16S rRNA gene from 41 vineyard soils and grapes collected in 2016 and 2017. Metadata information (slope, orientation, soil edaphic properties, grape physical factors, etc.) was also collected and used to identify the potential environmental and factors responsible for the differences in the microbial composition of soils and grapes.Soil pH significantly associated with differences in soil bacterial composition, grouping the 41 vineyards into 5 clusters, regardless of vintage or appellation. The historical land usage of the properties was found to be also a significant factor determining soil bacterial composition. Interestingly, the bacterial composition of grape berries significantly depended on rootstock type, supporting a strong influence of the rootstock genotype on the fruit-microbial associations. When removing rootstock as a factor, sugar content and pH significantly correlated with microbial composition differences between sites, revealing grape maturity as an additional important factor that drives microbial associations in the fruit.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Igor Baroja, Elena GARCÍA DE LA PEÑA, Iratxe ZARRAONAINDIA

University of the Basque Country, Ardoatek Dario, CANTU, University of California, Davis  And one, ESTONBA, University of the Basque Country, University of the Basque Country IKERBASQUE

Contact the author

Keywords

vineyard, microbiome, miseq, wine, txakoli

Citation

Related articles…

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Caracterización sensorial y preferencias de los consumidores en vinos de crianza biológica elaborados a diferente graduación alcohólica

Las tendencias actuales del mercado apuntan hacia el consumo de vinos con menor contenido en alcohol, y, por otra parte, de vinos con características especiales y diferenciadoras, siendo los vinos con indicación geográfica o denominación de origen los más demandados.

Frost risk projections in a changing climate are highly sensitive in time and space to frost modelling approaches

Late spring frost is a major challenge for various winegrowing regions across the world, its occurrence often leading to important yield losses and/or plant failure. Despite a significant increase in minimum temperatures worldwide, the spatial and temporal evolution of spring frost risk under a warmer climate remains largely uncertain. Recent projections of spring frost risk for viticulture in Europe throughout the 21st century show that its evolution strongly depends on the model approach used to simulate budburst. Furthermore, the frost damage modelling methods used in these projections are usually not assessed through comparison to field observations and/or frost damage reports.
The present study aims at comparing frost risk projections simulated using six spring frost models based on two approaches: a) models considering a fixed damage threshold after the predicted budburst date (e.g BRIN, Smoothed-Utah, Growing Degree Days, Fenovitis) and b) models considering a dynamic frost sensitivity threshold based on the predicted grapevine winter/spring dehardening process (e.g. Ferguson model). The capability of each model to simulate an actual frost event for the Vitis vinifera cv. Chadonnay B was previously assessed by comparing simulated cold thermal stress to reports of events with frost damage in Chablis, the northernmost winegrowing region of Burgundy. Models exhibited scores of κ > 0.65 when reproducing the frost/non-frost damage years and an accuracy ranging from 0.82 to 0.90.
Spring frost risk projections throughout the 21st century were performed for all winegrowing subregions of Bourgogne-Franche-Comté under two CMIP5 concentration pathways (4.5 and 8.5) using statistically downscaled 8×8 km daily air temperature and humidity of 13 climate models. Contrasting results with region-specific spring frost risk trends were observed. Three out of five models show a decrease in the frequency of frost years across the whole study area while the other two show an increase that is more or less pronounced depending on winegrowing subregion. Our findings indicate that the lack of accuracy in grapevine budburst and dehardening models makes climate projections of spring frost risk highly uncertain for grapevine cultivation regions.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.