Macrowine 2021
IVES 9 IVES Conference Series 9 Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Abstract

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea. Several grape varieties from 4 different wine appellations in France and Spain have been studied at different maturity stages to analyse: 1) B. cinerea abundance (established by qPCR), 2) grape composition parameters (comprising water activity measuring, exudates composition, phenologic stage, gluconic acid, calcium, etc), and 3) grape berries microbial community diversity and composition (using 16S rRNA and ITS amplicon sequencing).Preliminary analysis of the results obtained through 16S rRNA Next Generation Sequencing revealed differences in microbial richness and bacterial composition between the vineyards. Both alpha and beta diversities correlated with fruit maturity, where grapes at harvest stage showed significantly higher richness and a dissimilar bacterial composition. In addition, bacterial community structure differed between wine appellations. The study will increase significantly our understanding of the ecology of microbial associated to different grape varieties and viticulture areas. Additionally, it will generate knowledge about the factors.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guilherme Martins 1,2, Pauline Mazeau 1, Audrey Barsacq 1, Laurence Geny 1, Isabelle Masneuf-Pomarède 1,2 , Miren Andone Recalde 3, Iratxe Zarraonaindia 3

1 Université de Bordeaux, Isvv, Unité de Recherche Oenologie Ea 4577, Usc 1366 Inrae, Bordeaux Inp, 33140 Villenave D’Ornon, France.
2 Bordeaux Sciences Agro, 33170 Gradignan Cedex, France.
3 Department of Genetics, Physical, Anthropology & Animal Physiology, Faculty of Science And Technology, University of The Basque Country (Upv/Ehu), Leioa, Spain.
4 Ikerbasque, Basque Foundation For Science, Bilbao, Spain.

Contact the author

Keywords

microbial community, botrytis cinerea,  grape composition parameters, next generation sequencing

Citation

Related articles…

Study and valorization of vineyards “terroirs” in the Val de Loire

Face à la concurrence mondiale, il est indispensable de s’orienter vers des vins de qualité, marqués par une typicité et une authenticité inimitables. Le terroir représente, pour une région donnée, un patrimoine unique et non reproductible, qui peut être valorisé à travers l’origine et les caractéristiques sensorielles du vin.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

La variabilità del colore in vini rosati dell’Italia meridionale

Nei vini rosati, è il colore ad avere il primo impatto con il consumatore. Esso risulterà tanto più accattivante, quanto più elegante e raffinato si presenta.

New biotechnological approaches for a comprehensive characterization of AGL11 and its molecular mechanism underlying seedlessness trait in table grape

In table grapes seedlessness is a crucial breeding target, mainly results from stenospermocarpy, linked to the Thompson Seedless variety. Several studies investigated the genetic control of seedlessness identifying AGL11, a MADS-box transcription factor, as a crucial gene.
We performed a deep investigation of the whole AGL11 gene sequence in a collection of grapevine varieties revealing three different promoter-CDS combinations. By investigating the expression of the three AGL11 alleles and evaluating their ability to activate the promoter region, we show that AGL11 regulates its transcription in a specific promoter-CDS manner. By a multi-AGL11 co-expression analysis we identified a methyl jasmonate esterase, an indole-3-acetate beta-glucosyltransferase, and an isoflavone reductase as top AGL11 candidate targets. In vivo experiments further confirmed AGL11 role in regulating these genes, demonstrating its significant influence in seed development and thus in seedlessness trait.

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively.