Macrowine 2021
IVES 9 IVES Conference Series 9 Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Abstract

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea. Several grape varieties from 4 different wine appellations in France and Spain have been studied at different maturity stages to analyse: 1) B. cinerea abundance (established by qPCR), 2) grape composition parameters (comprising water activity measuring, exudates composition, phenologic stage, gluconic acid, calcium, etc), and 3) grape berries microbial community diversity and composition (using 16S rRNA and ITS amplicon sequencing).Preliminary analysis of the results obtained through 16S rRNA Next Generation Sequencing revealed differences in microbial richness and bacterial composition between the vineyards. Both alpha and beta diversities correlated with fruit maturity, where grapes at harvest stage showed significantly higher richness and a dissimilar bacterial composition. In addition, bacterial community structure differed between wine appellations. The study will increase significantly our understanding of the ecology of microbial associated to different grape varieties and viticulture areas. Additionally, it will generate knowledge about the factors.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guilherme Martins 1,2, Pauline Mazeau 1, Audrey Barsacq 1, Laurence Geny 1, Isabelle Masneuf-Pomarède 1,2 , Miren Andone Recalde 3, Iratxe Zarraonaindia 3

1 Université de Bordeaux, Isvv, Unité de Recherche Oenologie Ea 4577, Usc 1366 Inrae, Bordeaux Inp, 33140 Villenave D’Ornon, France.
2 Bordeaux Sciences Agro, 33170 Gradignan Cedex, France.
3 Department of Genetics, Physical, Anthropology & Animal Physiology, Faculty of Science And Technology, University of The Basque Country (Upv/Ehu), Leioa, Spain.
4 Ikerbasque, Basque Foundation For Science, Bilbao, Spain.

Contact the author

Keywords

microbial community, botrytis cinerea,  grape composition parameters, next generation sequencing

Citation

Related articles…

WHAT’S FUTURE FOR SANTORINI’S VITICULTURE IN THE CONTEXT OF CLIMATE CHANGE

The own-rooted vineyard of Santorini is a unique case of vineyard worldwide that is been cultivated for thousands of years. On the island’s volcanic soil, the vines are still cultivated with traditional techniques, which are adapted to the specific and extreme weather conditions that prevail on it. While climate change is a reality in the Mediterranean region, will Santorini vineyard endure its impact? The study of the traditional training systems, techniques and vine density, as well as the application of sustainable solutions (cover crops and use of kaolin etc.) revealed sustainable methods for the adaptation of the local viticulture to new climatic phenomena that tend to be more and more frequent in the region due to climate change.

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’

Preliminary characterisation of mannoproteins from different wine yeast strains and impact on wine properties

Mannoproteins (MPs) are released from the yeast cell wall during alcoholic fermentation and aging on the lees, and influence aspects of wine quality such as haze formation and colour stability. Yet, as this is a slow process with microbiological and sensory risks, the exogenous addition of extracted MPs poses an efficient alternative. While Saccharomyces cerevisiae has long been studied as a prominent source for MPs extraction, their structure and composition greatly differ between yeast species. This may influence their behaviour in the wine matrix and subsequent impact on wine properties. However, although wine yeast species other than S. cerevisiae possibly present an untapped source of MPs, they are still ill-characterised in terms of chemical composition and influence on wine.

THE FLAVANOL PROFILE OF SKIN, SEED, WINES, AND POMACE ARE CHARACTERISTIC OF EACH TYPOLOGY AND CONTRIBUTES TO UNDERSTAND THE FLAVAN- 3-OLS EXTRACTION DURING RED WINEMAKING

Wine flavanols are extracted from grape skin and seeds along red winemaking. Potentially, eight flavan-3-ol subunits may be present as monomers or as tannins constituents, being these catechin, epicathechin, gallocatechin, epigallocatechin end the gallates of the mentioned units. In this work the flavanol profiles of grape skins and seeds before (grapes) and after (pomace) red winemaking were studied together with the one in the corresponding wines. The trials were made over two vintages in Vitis vinifera cv. Tannat, Syrah and Marselan from Uruguay.

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).