Macrowine 2021
IVES 9 IVES Conference Series 9 Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Bacterial community in different wine appellations – biotic and abiotic interaction in grape berry and its impact on Botrytis cinerea development

Abstract

An in-depth knowledge on the conditions that trigger Botrytis disease and the microbial community associated with the susceptibility/resistance to it could led to the anticipation and response to the Botrytis emergence and severity. Therefore, the present study pretends to establish links between biotic and abiotic factors and the presence/abundance of B. cinerea. Several grape varieties from 4 different wine appellations in France and Spain have been studied at different maturity stages to analyse: 1) B. cinerea abundance (established by qPCR), 2) grape composition parameters (comprising water activity measuring, exudates composition, phenologic stage, gluconic acid, calcium, etc), and 3) grape berries microbial community diversity and composition (using 16S rRNA and ITS amplicon sequencing).Preliminary analysis of the results obtained through 16S rRNA Next Generation Sequencing revealed differences in microbial richness and bacterial composition between the vineyards. Both alpha and beta diversities correlated with fruit maturity, where grapes at harvest stage showed significantly higher richness and a dissimilar bacterial composition. In addition, bacterial community structure differed between wine appellations. The study will increase significantly our understanding of the ecology of microbial associated to different grape varieties and viticulture areas. Additionally, it will generate knowledge about the factors.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Guilherme Martins 1,2, Pauline Mazeau 1, Audrey Barsacq 1, Laurence Geny 1, Isabelle Masneuf-Pomarède 1,2 , Miren Andone Recalde 3, Iratxe Zarraonaindia 3

1 Université de Bordeaux, Isvv, Unité de Recherche Oenologie Ea 4577, Usc 1366 Inrae, Bordeaux Inp, 33140 Villenave D’Ornon, France.
2 Bordeaux Sciences Agro, 33170 Gradignan Cedex, France.
3 Department of Genetics, Physical, Anthropology & Animal Physiology, Faculty of Science And Technology, University of The Basque Country (Upv/Ehu), Leioa, Spain.
4 Ikerbasque, Basque Foundation For Science, Bilbao, Spain.

Contact the author

Keywords

microbial community, botrytis cinerea,  grape composition parameters, next generation sequencing

Citation

Related articles…

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Cumulative effect of deficit irrigation and salinity on vine responses

Climate change is increasing water needs in most of the wine growing regions while reducing the availability and quality of water resources for irrigation. In this context, the sustainability of Mediterranean viticulture depends on grapevine responses to the combinations of water and salt stress. With this aim, this work studies the effects of deficit irrigation and salinity on the physiology of the Tempranillo cultivar (Vitis vinifera L.) grafted onto a drought and salinity tolerant rootstock (1103 Paulsen).