Macrowine 2021
IVES 9 IVES Conference Series 9 Aroma profile of Oenococcus oeni strains in different life styles

Aroma profile of Oenococcus oeni strains in different life styles

Abstract

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

METHODS: Bacterial adhesion on polystyrene was evaluated using 96-well plates in MRS and must. Planktonic and sessile cells were numbered by plate count. Biofilm formation was also visualized by confocal laser scanning microscopy (CLSM, Nikon A1R) using hoechst fluorescent dye. Aroma compounds produced by sessile and planktonic cells were determined by solid phase microextraction coupled with gas chromatography (GC/MS SPME). RNA was extracted using using the Tri-reagent method (Sigma-Aldrich) according to the manufacturer’s instructions. Real-time analysis was performed using an iCycler IQ realtime PCR Detection System (Bio-Rad). ldhD and gyrA were used as reference genes. Fold changes were determined using the 2-ΔΔCT method.

RESULTS: The strains adhered to polystyrene in presence of MRS and must. In any case all strains preferred the planktonic state. CSLM was used to visualize cells distribution and their aggregation and confirmed that strains were able to form biofilm in must and MRS in a strain specific way. Quantitative and qualitative differences on aromatic compounds production were also detected. Higher alcohols and esters were mainly produced in the planktonic state, while organic acids in the sessile one. A strain specific behaviour was observed also for gene expression.

CONCLUSIONS: Biofilm formation can modulate aroma compounds production and probably the organoleptic characteristics of wine. Gene expression analysis revealed that aggregation state can influence malate and citrate metabolism. Further investigations are necessary to evaluate the interaction between Saccharomyces cerevisiae/non-Saccharomyces strains and O. oeni in biofilm formation in order to modulate wine characteristics.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rosanna Tofalo, Giorgia PERPETUINI,  Alessio Pio  ROSSETTI, Carlo PERLA

Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy Noemi BATTISTELLI, Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy  Luca VALBONETTI,  Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of TeramoVia R. Balzarini 1, 64100 Teramo, (TE), Italy,  Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy Giuseppe ARFELLI,  Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy , Dalton Biotecnologie S.R.L., Spoltore, PE, Italy Rosanna TOFALO Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, (TE), Italy

Contact the author

Keywords

oenococcus oeni, gene expression, aroma profile, biofilm

Citation

Related articles…

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.

Characteristics of ecological production of grape and wine in Prizren’s vineyard territory in Yugoslavia

Prizren’s vineyard territory-y assigned for ecological production of grapes and wine includes 1. 200 hectares of vineyard located in five separate localities which belongs to the P KB “Kosovo vina”, Mala Krusa in Prizren. Division of vineyard territory in zones was carried out in 1974. Pertaining to the vineyards, the climate and soil conditions have been studied and determined as well as topographie establishing of vineyard boundaries.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Evidence of successful wine business strategies: customer acquisition, value or retention?

This presentation illustrates a series of successful wine businesses, which have managed to counter the downward trend impacting the global industry. How these businesses have been successful is explained through the planning and execution of strategies that focused on a clear and consistent aim in attracting new consumers. These cases add weight to the ehrenbergian position that for a business to be successful it must target new customers as a priority over alternative options like increasing value or improving customer retention.

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.