Macrowine 2021
IVES 9 IVES Conference Series 9 Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

Abstract

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage. Thus, the settling stage is one of the stages that most illustrates the identity of Cognac wines. The freshly pressed white grape juice is placed in a settling tank but without the presence of pectolytic enzymes, without sulfiting and for a relatively short period of time, contrary to conventional oenological practices. Under these operating conditions, Cognac musts reach very high turbidities in the order of 500 to 2000 NTU against 150 to 200 NTU in conventional oenology. These Charentais musts, rich in solid particles and therefore in lipids [1], allow to guarantee an organoleptic quality that is both delicate and full of character for future eaux-de-vie. Associated with lipids, nitrogen is a nutrient with a major role in alcoholic fermentation [2] that will also influence the aromatic profile of wines [3] intended for distillation. To understand the impact of these main nutrients on the desired organoleptic quality of Cognac, we studied their influence under natural fermentation conditions with three strains of S. cerevisiae commonly used for the Cognac appellation. To understand the influence of each nutrient and their interaction, an experimental plan called “Central Composite Design” (CCD) was developed. The CCD allows to model the aroma productions from the fermentation conditions. Fermentations were carried out with natural ugni blanc must at 23°C. Assimilable nitrogen concentrations ranged from 115 to 285 mg/L and turbidity from 500 to 2700 NTU. Finally, a statistical analysis of covariance (ANCOVA) was also performed to evaluate the strain effect. The main results showed that lipids and assimilable nitrogen have a significant impact on the aromatic quality of Cognac wines. Indeed, high lipids concentrations favor the production of organic acids but inhibit the synthesis of esters. The metabolism of the 3 yeast strains reacts in the same way to changes in nitrogen and lipid nutrition. However, each strain keeps its own aromatic profile whatever the fermentation conditions. This study made it possible to study and model the impact and interaction of two essential nutrients for alcoholic fermentation on the metabolism of yeast in natural conditions with excess lipids. In addition, it should be noted that, even if each strain of the Cognac appellation has its aroma properties, all strains respond in the same way to the variations of nitrogen and lipid nutrition.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Charlie Guittin, Faïza, Montpellier Isabelle, Jean-Marie, Jean-Roch, SANCHEZ

UMR SPO, INRAE of Montpellier, MACNA, UMR SPO, INRAE Montpellier, , UMR MISTEA, INRAE Montpellier, SABLAYROLLES, UMR SPO, INRAE Montpellier Xavier, POITOU, Hennessy, Cognac, MOURET, UMR SPO, INRAE Montpellier Vincent, FARINES, UMR SPO, INRAE Montpellier

Contact the author

Keywords

cognac, nitrogen, lipids, centered composite design, alcoholic fermentation, Saccharomyces cerevisiae, metabolism, aromas

Citation

Related articles…

Soil carbon changes and greenhouse gas emissions in vineyards – Is the 4 per 1000 goal realistic?

In this video recording of the IVES science meeting 2023, Hans Reiner Schultz (Hochschule Geisenheim University, Germany) speaks about soil carbon changes and greenhouse gas emissions in vineyards – is the 4 per 1000 goal realistic?. This presentation is based on an original article accessible for free on OENO One.

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition. 

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.