Macrowine 2021
IVES 9 IVES Conference Series 9 Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

Abstract

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage. Thus, the settling stage is one of the stages that most illustrates the identity of Cognac wines. The freshly pressed white grape juice is placed in a settling tank but without the presence of pectolytic enzymes, without sulfiting and for a relatively short period of time, contrary to conventional oenological practices. Under these operating conditions, Cognac musts reach very high turbidities in the order of 500 to 2000 NTU against 150 to 200 NTU in conventional oenology. These Charentais musts, rich in solid particles and therefore in lipids [1], allow to guarantee an organoleptic quality that is both delicate and full of character for future eaux-de-vie. Associated with lipids, nitrogen is a nutrient with a major role in alcoholic fermentation [2] that will also influence the aromatic profile of wines [3] intended for distillation. To understand the impact of these main nutrients on the desired organoleptic quality of Cognac, we studied their influence under natural fermentation conditions with three strains of S. cerevisiae commonly used for the Cognac appellation. To understand the influence of each nutrient and their interaction, an experimental plan called “Central Composite Design” (CCD) was developed. The CCD allows to model the aroma productions from the fermentation conditions. Fermentations were carried out with natural ugni blanc must at 23°C. Assimilable nitrogen concentrations ranged from 115 to 285 mg/L and turbidity from 500 to 2700 NTU. Finally, a statistical analysis of covariance (ANCOVA) was also performed to evaluate the strain effect. The main results showed that lipids and assimilable nitrogen have a significant impact on the aromatic quality of Cognac wines. Indeed, high lipids concentrations favor the production of organic acids but inhibit the synthesis of esters. The metabolism of the 3 yeast strains reacts in the same way to changes in nitrogen and lipid nutrition. However, each strain keeps its own aromatic profile whatever the fermentation conditions. This study made it possible to study and model the impact and interaction of two essential nutrients for alcoholic fermentation on the metabolism of yeast in natural conditions with excess lipids. In addition, it should be noted that, even if each strain of the Cognac appellation has its aroma properties, all strains respond in the same way to the variations of nitrogen and lipid nutrition.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Charlie Guittin, Faïza, Montpellier Isabelle, Jean-Marie, Jean-Roch, SANCHEZ

UMR SPO, INRAE of Montpellier, MACNA, UMR SPO, INRAE Montpellier, , UMR MISTEA, INRAE Montpellier, SABLAYROLLES, UMR SPO, INRAE Montpellier Xavier, POITOU, Hennessy, Cognac, MOURET, UMR SPO, INRAE Montpellier Vincent, FARINES, UMR SPO, INRAE Montpellier

Contact the author

Keywords

cognac, nitrogen, lipids, centered composite design, alcoholic fermentation, Saccharomyces cerevisiae, metabolism, aromas

Citation

Related articles…

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.

Effet terroir et arômes des muscats

L’étude porte sur trois terroirs du Roussillon, classés dans l’A.O.C. Muscat de Rivesaltes et concerne les 2 cépages de cette appellation : le muscat à petits grains et le muscat d’Alexandrie. Elle a pour objectif de connaître pour un terroir donné le meilleur choix de cépage.

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.