Macrowine 2021
IVES 9 IVES Conference Series 9 Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

Abstract

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage. Thus, the settling stage is one of the stages that most illustrates the identity of Cognac wines. The freshly pressed white grape juice is placed in a settling tank but without the presence of pectolytic enzymes, without sulfiting and for a relatively short period of time, contrary to conventional oenological practices. Under these operating conditions, Cognac musts reach very high turbidities in the order of 500 to 2000 NTU against 150 to 200 NTU in conventional oenology. These Charentais musts, rich in solid particles and therefore in lipids [1], allow to guarantee an organoleptic quality that is both delicate and full of character for future eaux-de-vie. Associated with lipids, nitrogen is a nutrient with a major role in alcoholic fermentation [2] that will also influence the aromatic profile of wines [3] intended for distillation. To understand the impact of these main nutrients on the desired organoleptic quality of Cognac, we studied their influence under natural fermentation conditions with three strains of S. cerevisiae commonly used for the Cognac appellation. To understand the influence of each nutrient and their interaction, an experimental plan called “Central Composite Design” (CCD) was developed. The CCD allows to model the aroma productions from the fermentation conditions. Fermentations were carried out with natural ugni blanc must at 23°C. Assimilable nitrogen concentrations ranged from 115 to 285 mg/L and turbidity from 500 to 2700 NTU. Finally, a statistical analysis of covariance (ANCOVA) was also performed to evaluate the strain effect. The main results showed that lipids and assimilable nitrogen have a significant impact on the aromatic quality of Cognac wines. Indeed, high lipids concentrations favor the production of organic acids but inhibit the synthesis of esters. The metabolism of the 3 yeast strains reacts in the same way to changes in nitrogen and lipid nutrition. However, each strain keeps its own aromatic profile whatever the fermentation conditions. This study made it possible to study and model the impact and interaction of two essential nutrients for alcoholic fermentation on the metabolism of yeast in natural conditions with excess lipids. In addition, it should be noted that, even if each strain of the Cognac appellation has its aroma properties, all strains respond in the same way to the variations of nitrogen and lipid nutrition.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Charlie Guittin, Faïza, Montpellier Isabelle, Jean-Marie, Jean-Roch, SANCHEZ

UMR SPO, INRAE of Montpellier, MACNA, UMR SPO, INRAE Montpellier, , UMR MISTEA, INRAE Montpellier, SABLAYROLLES, UMR SPO, INRAE Montpellier Xavier, POITOU, Hennessy, Cognac, MOURET, UMR SPO, INRAE Montpellier Vincent, FARINES, UMR SPO, INRAE Montpellier

Contact the author

Keywords

cognac, nitrogen, lipids, centered composite design, alcoholic fermentation, Saccharomyces cerevisiae, metabolism, aromas

Citation

Related articles…

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.

austrianvineyards.com: online viewer of all designations of Austrian wine

To digitally record and present all the origins of Austrian wines in the same perfect and clear way was the motivation for the Austrian Wine Marketing Board (Austrian Wine) to start with the project in 2018. In June 2021 the results were presented to the public in an online viewer showing all the designations of Austrian wine, available at https://austrianvineyards.com in a largely barrier-free manner. The online viewer provides tailored individual maps fitted to the respective zoom level. The smallest unit of wine-origins in Austria is called Ried and is displayed in a plot-specific manner highlighting areas under vine. Information on the Ried include administrative district, winegrowing municipality, cadastral municipality, large collective vineyard site, specific winegrowing region, generic winegrowing region, winegrowing area and, in many cases, an illustrative picture. Complementary data on the size, elevation (minimum-maximum), orientation (in 8 sectors plus flat) and gradient (minimum, maximum, average) are based on the area under vine according to the EU’s Integrated Administration and Control System. Additional information covers climate data. The diagrams are taken from the monthly breakdown of data in the annals of the Central Institute for Meteorology and Geodynamics, Austria provide a display of values for air temperature, precipitation, and sunshine hours for the reference year and the long-term average. Seasonal aggregated data on temperature, precipitation, and sunshine hours complete the display. Short descriptions with emphasis on geology and soil, field name in historical maps, etymology of the denomination, and main planted variety complements the available information for the main designations in the online viewer. These descriptions are compiled by winegrowers, geologists, historians, and journalists. All the information and data can be extracted to a pdf-file. Printed vineyard maps are also available. Missing content regarding wine origins in Styria will be completed in winter 2021/22.

Symbiotic microorganisms application in vineyards: impacts on grapevine performance and microbiome

Microorganism-based inoculants have been suggested as a viable solution to mitigate the adverse effects of climate change on viticulture. However, the actual effectiveness of these inoculants when applied under field conditions remains a challenge, and their effects on the existing soil microbiota are still uncertain. This study investigates the impact of arbuscular mycorrhizal fungi inoculation on grapevine performance and microbiome. The study was conducted in a vineyard of Callet cultivar in Binissalem, Mallorca, Spain. Two different treatments were applied: control and inoculation with commercial mycorrhizae complex of Rhizoglomus irregulare applied to plants through irrigation.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.