Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of plant fining agents in the must flotation process. Functional characterization

Effect of plant fining agents in the must flotation process. Functional characterization

Abstract

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol. However, in recent years, there is a growing commercial interest in replacing this animal origin protein with plant proteins, due, on the one hand, to the problems associated with allergies and, on the other hand, also thinking in the vegan wine consumers. However the efficiency of plant proteins as floculating agents are lower than gelatine and varies among them, the reason behind the different behaviour being unknown (Marchal et al., 2003; Gambuti et al., 2016; Petinelli et al., 2020). The objective of this work was to compare the flocculating efficiency of a commercial gelatine, a pure pea protein and the same pea protein chemically modified and to relate this efficiency to their amino acid composition and protein functions.The determination of the efficiency was carried out by measuring the percentage of clean must after 1 h from flotation beginning and the measuring of the absorbance at 440 nm to control the browning, while the content of amino acids and peptides was carried out by HPLC-MS. The UNIPROT database was used to obtain the protein functions associated with the peptidesThe results showed that the modified pea protein showed very similar effciency as flotation agent to that of the commercial gelatine and higher than the pure pea protein. The important structural modification made to the pea protein made it more reactive, probably due to a higher exposure of its structure and the apolar and positively charged amino acids, and to the appearance of peptides with protein functions of binding to carbohydrates and proteins, which are also present in animal protein. With these results it can be concluded that pure vegetal proteins may not have sufficientt functional properties to behave as good flocculating agents, although certain chemical modification in their structure may further simulate the behaviour shown by animal protein.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Belén Bautista-Ortín, Sonia, Albendea-Roa,  Jurado

University of Murcia,Bermúdez-Galvez, (University of Murcia) Gómez-Plaza, Encarna (University of Murcia), Mar (Agrovin S.A.), Ricardo (Agrovin, S.A.)

Contact the author

Keywords

finning, amioacids, proteins, flotation, white wine

Citation

Related articles…

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

Changes in grape-associated microbiome as a consequence of post-harvest withering

AIM: Grape withering is an oenological post-harvest process used for production of reinforced and sweet wines. Drying can be carried out by keeping the ripe grape in traditional large, well-aired rooms (non-controlled environment) or, more and more often, in a warehouse under controlled conditions of airflow and relative humidity (controlled environment)[1].

Gas Chromatography-Olfactometry (GCO) screening of odorant compounds associated with the tails-off flavour in wine distillates

The development of off-flavours in wine distillates, particularly those associated with the tails fraction, is a key issue in the production of high-quality spirits.