Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of plant fining agents in the must flotation process. Functional characterization

Effect of plant fining agents in the must flotation process. Functional characterization

Abstract

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol. However, in recent years, there is a growing commercial interest in replacing this animal origin protein with plant proteins, due, on the one hand, to the problems associated with allergies and, on the other hand, also thinking in the vegan wine consumers. However the efficiency of plant proteins as floculating agents are lower than gelatine and varies among them, the reason behind the different behaviour being unknown (Marchal et al., 2003; Gambuti et al., 2016; Petinelli et al., 2020). The objective of this work was to compare the flocculating efficiency of a commercial gelatine, a pure pea protein and the same pea protein chemically modified and to relate this efficiency to their amino acid composition and protein functions.The determination of the efficiency was carried out by measuring the percentage of clean must after 1 h from flotation beginning and the measuring of the absorbance at 440 nm to control the browning, while the content of amino acids and peptides was carried out by HPLC-MS. The UNIPROT database was used to obtain the protein functions associated with the peptidesThe results showed that the modified pea protein showed very similar effciency as flotation agent to that of the commercial gelatine and higher than the pure pea protein. The important structural modification made to the pea protein made it more reactive, probably due to a higher exposure of its structure and the apolar and positively charged amino acids, and to the appearance of peptides with protein functions of binding to carbohydrates and proteins, which are also present in animal protein. With these results it can be concluded that pure vegetal proteins may not have sufficientt functional properties to behave as good flocculating agents, although certain chemical modification in their structure may further simulate the behaviour shown by animal protein.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Belén Bautista-Ortín, Sonia, Albendea-Roa,  Jurado

University of Murcia,Bermúdez-Galvez, (University of Murcia) Gómez-Plaza, Encarna (University of Murcia), Mar (Agrovin S.A.), Ricardo (Agrovin, S.A.)

Contact the author

Keywords

finning, amioacids, proteins, flotation, white wine

Citation

Related articles…

Effects of mesoclimate on the yield, quality and phenolic maturity of Grenache

The potential climate change, due to global change, will increase temperature general and could increase at local level. These changes are not going to be the same in different parts of the world, being especially important in the Mediterranean Basin.

Évaluation environnementale de pratiques vitivinicoles innovantes

The Institut Français De La Vigne Et Du Vin (IFV) is conducting many experiments on innovative winegrowing practices, which are emerging in companies in the sector, or which are still at the R&D stage for agricultural suppliers. The purpose of these practices may be to reduce environmental impact, to adapt vineyards to climate change, or to achieve other technical, economic or social aims. Whatever the objective, it is necessary to verify the relevance of these new practices, and in particular their environmental relevance, i.e. That at the very least, the changes in practices do not increase the environmental impact of the technical itineraries.

Lead levels in fortified wines

AIM The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels.

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

PINKING PHENOMENA ON WHITE WINES: RELATION BETWEEN PINKING SUSCEPTIBILITY INDEX (PSI) AND WINE ANTHOCYANINS CONTENT

Pinking is the emergence of pink tones in white wines exclusively produced from white grape varieties, known as pinking phenomena for many years. Pinking is essentially appeared when white wines are produced under reducing conditions [1,2,3]. Pinking usually occurs after bottling and storage of white wines, but its appearance has also been described after alcoholic fermentation or even as soon as the grape must is extracted [4]. Therefore, the purpose of this work was to investigate the existence of an-thocyanins in white wines made from different white grape varieties and grown locations and critically evaluate the most common method used for predicting pinking appearance in white wines: the Pinking Susceptibility Index (PSI).