Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of plant fining agents in the must flotation process. Functional characterization

Effect of plant fining agents in the must flotation process. Functional characterization

Abstract

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol. However, in recent years, there is a growing commercial interest in replacing this animal origin protein with plant proteins, due, on the one hand, to the problems associated with allergies and, on the other hand, also thinking in the vegan wine consumers. However the efficiency of plant proteins as floculating agents are lower than gelatine and varies among them, the reason behind the different behaviour being unknown (Marchal et al., 2003; Gambuti et al., 2016; Petinelli et al., 2020). The objective of this work was to compare the flocculating efficiency of a commercial gelatine, a pure pea protein and the same pea protein chemically modified and to relate this efficiency to their amino acid composition and protein functions.The determination of the efficiency was carried out by measuring the percentage of clean must after 1 h from flotation beginning and the measuring of the absorbance at 440 nm to control the browning, while the content of amino acids and peptides was carried out by HPLC-MS. The UNIPROT database was used to obtain the protein functions associated with the peptidesThe results showed that the modified pea protein showed very similar effciency as flotation agent to that of the commercial gelatine and higher than the pure pea protein. The important structural modification made to the pea protein made it more reactive, probably due to a higher exposure of its structure and the apolar and positively charged amino acids, and to the appearance of peptides with protein functions of binding to carbohydrates and proteins, which are also present in animal protein. With these results it can be concluded that pure vegetal proteins may not have sufficientt functional properties to behave as good flocculating agents, although certain chemical modification in their structure may further simulate the behaviour shown by animal protein.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Belén Bautista-Ortín, Sonia, Albendea-Roa,  Jurado

University of Murcia,Bermúdez-Galvez, (University of Murcia) Gómez-Plaza, Encarna (University of Murcia), Mar (Agrovin S.A.), Ricardo (Agrovin, S.A.)

Contact the author

Keywords

finning, amioacids, proteins, flotation, white wine

Citation

Related articles…

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Increasing soil organic carbon (SOC) in vineyards enhances soil health with associated benefits for climate change resilience and mitigation.

Possible methods of adaptation to the effects of climate change in the Tokaj Wine Region 

Viticulture’s adaptation to the harmful effects of climate change is globally the biggest challenge of the near future. Short, extremely intensive rainfalls and longer periods of drought are getting more frequent in the Tokaj Wine Region, where the majority of the vineyards are cultivated on steep slopes. Hence, erosion has high risk, especially when combined with the loess-based soils on about ten percent of the region. The environmentally beneficial cover crop and mulch usage can effectively reduce the risk of erosion, according to research done by the Tokaj Wine Region Research Institute of Viticulture and Oenology.

The application of soil biological indicators to support soil conservation practices and landscape quality in viticulture

Le but de notre travail a été d’étudier l’influence de différents systèmes de la gestion du sol en viticulture sur des paramètres biologiques de sol comme indicateurs de la protection et de la qualité du sol. La conservation de sol est indispensable pour une viticulture durable et la protection du terroir. Nos résultats ont montré, que la matière