Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of plant fining agents in the must flotation process. Functional characterization

Effect of plant fining agents in the must flotation process. Functional characterization

Abstract

Flotation is one of the most used processes for clarifying white grape must after the pressing process. To date, gelatine is the more used fining agent, its action being improved when combined with bentonite and silica sol. However, in recent years, there is a growing commercial interest in replacing this animal origin protein with plant proteins, due, on the one hand, to the problems associated with allergies and, on the other hand, also thinking in the vegan wine consumers. However the efficiency of plant proteins as floculating agents are lower than gelatine and varies among them, the reason behind the different behaviour being unknown (Marchal et al., 2003; Gambuti et al., 2016; Petinelli et al., 2020). The objective of this work was to compare the flocculating efficiency of a commercial gelatine, a pure pea protein and the same pea protein chemically modified and to relate this efficiency to their amino acid composition and protein functions.The determination of the efficiency was carried out by measuring the percentage of clean must after 1 h from flotation beginning and the measuring of the absorbance at 440 nm to control the browning, while the content of amino acids and peptides was carried out by HPLC-MS. The UNIPROT database was used to obtain the protein functions associated with the peptidesThe results showed that the modified pea protein showed very similar effciency as flotation agent to that of the commercial gelatine and higher than the pure pea protein. The important structural modification made to the pea protein made it more reactive, probably due to a higher exposure of its structure and the apolar and positively charged amino acids, and to the appearance of peptides with protein functions of binding to carbohydrates and proteins, which are also present in animal protein. With these results it can be concluded that pure vegetal proteins may not have sufficientt functional properties to behave as good flocculating agents, although certain chemical modification in their structure may further simulate the behaviour shown by animal protein.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ana Belén Bautista-Ortín, Sonia, Albendea-Roa,  Jurado

University of Murcia,Bermúdez-Galvez, (University of Murcia) Gómez-Plaza, Encarna (University of Murcia), Mar (Agrovin S.A.), Ricardo (Agrovin, S.A.)

Contact the author

Keywords

finning, amioacids, proteins, flotation, white wine

Citation

Related articles…

Precipitation variability in a temperate coastal region and how it affects Tannat and Albariño cultivars 

Climate is one of the main components that defines the development and behavior of the plant, conditioning the health status and the final quality of the grapes. In temperate coastal climates such as in Uruguay (latitude 35° S, longitude 55° O), precipitations during the growing season present high interannual variability, with a average of 100 mm per month. This variability means that plants must adapt to conditions from one year to the next.

A look back at 20 years of exploring the future of the vines and wines sector

What if, in 25 years, most wines were dealcoholized and flavored ? What if vines were only cultivated to combat erosion, store carbon, and provide anthocyanins…? What if climate change completely changed the list of vine varieties cultivable for wine production in France? What if food stores had completely disappeared in favor of virtual platforms? And if… because the long-term future is not predetermined and therefore not knowable, because the future is open to several possibilities, because the future does not emerge from nothing but from the present which conceals heavy trends and weak signals, prospective approaches make it possible to consider the room for maneuver that actors have to promote the advent of a future, which we can hope to be chosen, at least in part.

Which heat test really represents the haze risk of a white Sauvignon wine ?

AIM: Different heat tests are used to predict a white wine haze risk after bottling. The most used tests are 30-60 min. at 80°C. Nevertheless, there is a lack of information about the relationship between the wine haze observed after such tests and the turbidities observed in the bottles after the storage/transport of the wines in more realistic Summer conditions (35-46°C during 3-12 days)

Grapevine yield estimation in a context of climate change: the GraY model

Grapevine yield is a key indicator to assess the impacts of climate change and the relevance of adaptation strategies in a vineyard landscape. At this scale, a yield model should use a number of parameters and input data in relation to the information available and be able to reproduce vineyard management decisions (e.g. soil and canopy management, irrigation). In this study, we used data from six experimental sites in Southern France (cv. Syrah) to calibrate a model of grapevine yield limited by water constraint (GraY). Each yield component (bud fertility, number of berries per bunch, berry weight) was calculated as a function of the soil water availability simulated by the WaLIS water balance model at critical phenological phases. The model was then evaluated in 10 grapegrowers’ plots, covering a diversity of biophysical and technical contexts (soil type, canopy size, irrigation, cover crop). We identified three critical periods for yield formation: after flowering on the previous year for the number of bunches and berries, around pre-veraison and post-veraison of the same year for mean berry weight. Yields were simulated with a model efficiency (EF) of 0.62 (NRMSE = 0.28). Bud fertility and number of berries per bunch were more accurately simulated (EF = 0.90 and 0.77, NRMSE = 0.06 and 0.10, respectively) than berry weight (EF = -0.31, NRMSE = 0.17). Model efficiency on the on-farm plots reached 0.71 (NRMSE = 0.37) simulating yields from 1 to 8 kg/plant. The GraY model is an original model estimating grapevine yield evolution on the basis of water availability under future climatic conditions.  It allows to evaluate the effects of various adaptation levers such as planting density, cover crop management, fruit/leaf ratio, shading and irrigation, in various production contexts.

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).