Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluating analytical methods for quantification of glutathione in grape juice and wine

Evaluating analytical methods for quantification of glutathione in grape juice and wine

Abstract

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage. His concentration in the grape juice is variable. Enological practice in the cellar can promote the preservation of the GSH in the grape juice. Recently the prescription of OIV allows to add glutathione rich substances to the must. This new practice creates an increasing interest in the quantification of GSH. Several analytical methods were published to measure GSH[1,2,3,4] and his dimer (GSSG) separately[5] or together as total glutathione[6] content. In this work we compared two analytical methods for the analyses of grape juice and wine samples.

METHODS: The first method is an enzymatic assay (EA), based on the reaction of thiol with DTNB in the presence of glutathione reductase enzyme to measure the total glutathione content. This method was automatized to allow high through-put measurements in the concentration range of 5-100mg/l. The second method, using UPLC-MS/MS, is more sensitive (LOD = 0.5mg/l) and permits simultaneous quantification of GSH, GSSG and additionally the sulfonated form of glutathione (GSSO3H).

RESULTS: The best results were obtained with 2.5g/l ascorbic acid. Using the two analytical methods, we found a strong correlation (R2=0.98) between the total glutathione (EA) and the sum of GSH and GSSG (UPLC-MS/MS) in grape juice samples (n>100), where the GSSO3H concentration was low (0-8 mg/l) comparing to the GSH and GSSG (5-100mg/l). In wine samples the total glutathione concentration was low (2-7mg/l) and the GSSO3H was more important (5-9mg/l) due to the combination of SO2 with the glutathione. View the high reactivity of GSH, a special attention should be accorded to the preparation and the storage of grape juice samples. We compared the effect of different concentration of SO2 and ascorbic acid as additives and found that 2.5g/l ascorbic acid gave the best results.

CONCLUSION

Based on our results the enzymatic assay is an economic alternative to measure the total glutathione concentration of grape juice. However for wine the UPLC-MS/MS method is recommended, to reach the necessary sensitivity and to analyze all glutathione species.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ágnes Dienes-Nagy

Agroscope, Nyon, Switzerland,Frédéric VUICHARD, Agroscope, Nyon, Switzerland Marie BLACKFORD, Agroscope, Nyon, Switzerland Fabrice LORENZINI, Agroscope, Nyon, Switzerland

Contact the author

Keywords

glutathione, enzymatic assay, uplc-ms/ms

Citation

Related articles…

Dalle zonazioni storiche alle “nuove forestazioni storiche produttive vitivinicole” per la valorizzazione delle cultivar e dei prodotti tipici ed originali dei Monti Iblei

Analisi sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” per impostare innovative zonazioni vitivinicole e dei prodotti tipici, originali attraverso la “Nuova forestazione storica produttiva”. Le recenti ricerche ed attività svolte sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” dei Monti Iblei (Ragusa) (I) hanno permesso di rilanciare le produzioni tipiche ed originali vitivinicole in un innovativo programma integrato tra zonazione (“Grande Zonazione”) e “Nuova forestazione storica produttiva” (“Grande Forestazione Produttiva”) di questo importante territorio.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.

Effects of different antioxidant strategies on the phenolic evolution during the course of a white winemaking process

This work aimed to evaluate the evolution of phenolic compounds during white winemaking process up to bottling and 12 months storage, together with the influence of different antioxidant strategies

Defining gene regulation and co-regulation at single cell resolution in grapevine

Conventional molecular analyses provide bulk genomic/transcriptomic data that are unable to reveal the cellular heterogeneity and to precisely define how gene networks orchestrate organ development. We will profile gene expression and identify open chromatin regions at the individual cells level, allowing to define cell-type specific regulatory elements, developmental trajectories and transcriptional networks orchestrating organ development and function. We will perform scRNA-seq and snATAC-seq on leaf/berry protoplasts and nuclei and combine them with the leaf/berry bulk tissues obtained results, where the analysis of transcripts, chromatin accessibility, histone modification and transcription factor binding sites showed that a large fraction of phenotypic variation appears to be determined by regulatory rather than coding variation and that many variants have an organ-specific effect.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.