Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluating analytical methods for quantification of glutathione in grape juice and wine

Evaluating analytical methods for quantification of glutathione in grape juice and wine

Abstract

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage. His concentration in the grape juice is variable. Enological practice in the cellar can promote the preservation of the GSH in the grape juice. Recently the prescription of OIV allows to add glutathione rich substances to the must. This new practice creates an increasing interest in the quantification of GSH. Several analytical methods were published to measure GSH[1,2,3,4] and his dimer (GSSG) separately[5] or together as total glutathione[6] content. In this work we compared two analytical methods for the analyses of grape juice and wine samples.

METHODS: The first method is an enzymatic assay (EA), based on the reaction of thiol with DTNB in the presence of glutathione reductase enzyme to measure the total glutathione content. This method was automatized to allow high through-put measurements in the concentration range of 5-100mg/l. The second method, using UPLC-MS/MS, is more sensitive (LOD = 0.5mg/l) and permits simultaneous quantification of GSH, GSSG and additionally the sulfonated form of glutathione (GSSO3H).

RESULTS: The best results were obtained with 2.5g/l ascorbic acid. Using the two analytical methods, we found a strong correlation (R2=0.98) between the total glutathione (EA) and the sum of GSH and GSSG (UPLC-MS/MS) in grape juice samples (n>100), where the GSSO3H concentration was low (0-8 mg/l) comparing to the GSH and GSSG (5-100mg/l). In wine samples the total glutathione concentration was low (2-7mg/l) and the GSSO3H was more important (5-9mg/l) due to the combination of SO2 with the glutathione. View the high reactivity of GSH, a special attention should be accorded to the preparation and the storage of grape juice samples. We compared the effect of different concentration of SO2 and ascorbic acid as additives and found that 2.5g/l ascorbic acid gave the best results.

CONCLUSION

Based on our results the enzymatic assay is an economic alternative to measure the total glutathione concentration of grape juice. However for wine the UPLC-MS/MS method is recommended, to reach the necessary sensitivity and to analyze all glutathione species.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ágnes Dienes-Nagy

Agroscope, Nyon, Switzerland,Frédéric VUICHARD, Agroscope, Nyon, Switzerland Marie BLACKFORD, Agroscope, Nyon, Switzerland Fabrice LORENZINI, Agroscope, Nyon, Switzerland

Contact the author

Keywords

glutathione, enzymatic assay, uplc-ms/ms

Citation

Related articles…

Machines and fire: developing a rapid detection system for grapevine smoke contamination using NIR spectroscopy and machine learning modelling

Bushfires are a common occurrence throughout Australia and their incidence is predicted to both rise and increase in severity due to climate change. Many of these bushfires occur in areas close to wine regions, which receive different levels of exposure to smoke. Wine produced from smoke-affected grapes are characterised by unpalatable smoky aromas such as “burning rubber”, “smoked meats” and “burnt wood”. These smoke tainted wines are unprofitable and result in significant financial losses for winegrowers.

Bentonite fining in cold wines: prediction tests, reduced efficiency and possibilities to avoid additional fining treatments

Bentonite fining is widely used to prevent protein haze in white wines. Most wineries use laboratory-scale fining trials to define the appropriate amount of bentonite to be used in the cellar. Those pre-tests need to mimic as much as possible the industrial scale fining procedure to determine the exact amount of bentonite necessary for protein stability. Nevertheless it is frequent that, after fining with the recommended amount of bentonite, wines appear still unstable and need an additional fining treatment. It remains a major challenge to understand why the same wine, fined with the same dosage of the same bentonite, achieves stability in the lab, but not in the cellar.

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

Chitosan from sustainable source: antimicrobial activity against undesirable yeasts for production of low-sulphite wine

The addition of sulphur dioxide (SO2) is the method traditionally used for wine stabilisation, due to its broad spectrum of action against unwanted microorganisms and its ability to prevent oxidative phenomena.

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.