Macrowine 2021
IVES 9 IVES Conference Series 9 The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

Abstract

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

METHODS Cabernet-Sauvignon grape bunches were sampled every ten days from veraison through to harvest from the Coonawarra Geographical Indication of South Australia in 2020. After sorting into maturity classes using density baths,1 berries were homogenised and an Aqualog spectrophotometer was used to record the excitation emission matrix (EEM)2 of each maturity class at each sample date. The pre-processed EEM data underwent parallel factor analysis (PARAFAC) to identify the relevant fluorescence regions that discriminated samples based on maturity. The grape homogenate EEM dataset was then used to formulate a variability index.

RESULTS Chlorophyll and anthocyanin fluorescence signals were identified from EEM data at excitation wavelengths in the range 250 – 700 nm and emission wavelengths between 400 – 800 nm in grape homogenate samples using PARAFAC. Discrimination between samples depending on maturity was achieved using PARAFAC. The variability index was calculated and levels of grape heterogeneity were quantified.

CONCLUSIONS

This work demonstrated the possibility of using grape homogenate EEM data, particularly in the region of chlorophyll and anthocyanin fluorescence, to objectively measure grape heterogeneity by developing a variability index. Grape heterogeneity has been shown to impact Cabernet-Sauvignon wine chemical profile and sensory characteristics.3 Therefore, a tool to analyse grape heterogeneity within a winery could aid viticultural and winemaking decisions to achieve wines of targeted quality and style.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Armstrong 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. ,Adam GILMORE, HORIBA Instruments Inc., Piscataway, United States. Paul BOSS, CSIRO Agriculture and Food and Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.  Vinay PAGAY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. David JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.

Contact the author

Keywords

chemometrics, colour, grape maturity, parafac, vineyard variability

Citation

Related articles…

Use of new tools for red wine aging: active and passive microoxygenation with oak wood. Effect on volatile compounds and sensorial impact

The aim of this study was to evaluate the evolution of different chemical parameters and sensory impact on red wine during maturation in barrels or with new technologies

Yeast derivatives: a promising alternative in wine oxidation prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality

Screening of phenolic compounds and antioxidant potential of grapes, wine and grape by-products

Polyphenols, bioactive secondary metabolites abundantly found in various grapevine components such as stalks, skins, and seeds, have attracted considerable attention in recent decades due to their potential health benefits. These compounds, including flavan-3-ols, flavanols, flavones, and stilbenes, are known for their antioxidant and anti-inflammatory properties.

Identification of key-odorants in Sauternes Wines

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD).

Using multifactorial analysis to evaluate the contribution of terroir components to the oenological potential of grapes at harvest

The oenological potential of grapes at harvest depends on a combination of the major components of Terroir: the climate, the soil, the plant material, the training system and the crop management.