Macrowine 2021
IVES 9 IVES Conference Series 9 The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

Abstract

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

METHODS Cabernet-Sauvignon grape bunches were sampled every ten days from veraison through to harvest from the Coonawarra Geographical Indication of South Australia in 2020. After sorting into maturity classes using density baths,1 berries were homogenised and an Aqualog spectrophotometer was used to record the excitation emission matrix (EEM)2 of each maturity class at each sample date. The pre-processed EEM data underwent parallel factor analysis (PARAFAC) to identify the relevant fluorescence regions that discriminated samples based on maturity. The grape homogenate EEM dataset was then used to formulate a variability index.

RESULTS Chlorophyll and anthocyanin fluorescence signals were identified from EEM data at excitation wavelengths in the range 250 – 700 nm and emission wavelengths between 400 – 800 nm in grape homogenate samples using PARAFAC. Discrimination between samples depending on maturity was achieved using PARAFAC. The variability index was calculated and levels of grape heterogeneity were quantified.

CONCLUSIONS

This work demonstrated the possibility of using grape homogenate EEM data, particularly in the region of chlorophyll and anthocyanin fluorescence, to objectively measure grape heterogeneity by developing a variability index. Grape heterogeneity has been shown to impact Cabernet-Sauvignon wine chemical profile and sensory characteristics.3 Therefore, a tool to analyse grape heterogeneity within a winery could aid viticultural and winemaking decisions to achieve wines of targeted quality and style.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Armstrong 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. ,Adam GILMORE, HORIBA Instruments Inc., Piscataway, United States. Paul BOSS, CSIRO Agriculture and Food and Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.  Vinay PAGAY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. David JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.

Contact the author

Keywords

chemometrics, colour, grape maturity, parafac, vineyard variability

Citation

Related articles…

Observatoire Grenache en Vallée du Rhône: incidence du terroir sur la composition polyphénolique des raisins et des vins

The Grenache observatory was created in 1995. The object of this 24 parcels network, covering main Rhone Valley soils, is to state the effect of pedo-climatic conditions on plant physiology and wine characteristics. The results concerning colour and tanins show a very important diversity in Grenache behaviour.

Sustaining grape production under challenging climate change circumstances

Grapevines are an important economic crop grown in temperate climates of both hemispheres characterized by short‐term heat spells and heat waves

Climats: a model of terroir-based winegrowing recognized by UNESCO

In Burgundy, a climat has nothing to do with the weather but accurately designates a named vine plot, often centuries-old, which produces a singular wine. This wine is the combination of history, the natural environment (relief, type of soil, exposure to the sun), a grape variety and know-how going back thousands of years. The grapes of each climat are harvested separately and the wine is made from a single grape variety and has a unique name featured on the bottle. Romanée conti, clos de vougeot, montrachet, musigny, corton…

How to deal with the Green Deal – Resistant grapevine varieties to reduce the use of pesticides in the EU

With its Farm-to-Fork Strategy, which is a part of the European Green Deal, the European Union aims at reducing the amount of pesticides used in agriculture by 50% until 2030. As viticulture uses around 70% of the fungicides in the EU, there is substantial pressure on winemakers to reduce their pesticide input. On top of the political goal, winegrowers face increased pressure from the public demanding a more sustainable production of wine.

Enhancing vine resilience and protecting grape production in Mediterranean vineyards: the role of anti-hail shading nets and kaolin applications

Climate change and rising temperatures present a substantial challenge to viticulture, intensifying summer heat stress and accelerating berry ripening.