Macrowine 2021
IVES 9 IVES Conference Series 9 The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

Abstract

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

METHODS Cabernet-Sauvignon grape bunches were sampled every ten days from veraison through to harvest from the Coonawarra Geographical Indication of South Australia in 2020. After sorting into maturity classes using density baths,1 berries were homogenised and an Aqualog spectrophotometer was used to record the excitation emission matrix (EEM)2 of each maturity class at each sample date. The pre-processed EEM data underwent parallel factor analysis (PARAFAC) to identify the relevant fluorescence regions that discriminated samples based on maturity. The grape homogenate EEM dataset was then used to formulate a variability index.

RESULTS Chlorophyll and anthocyanin fluorescence signals were identified from EEM data at excitation wavelengths in the range 250 – 700 nm and emission wavelengths between 400 – 800 nm in grape homogenate samples using PARAFAC. Discrimination between samples depending on maturity was achieved using PARAFAC. The variability index was calculated and levels of grape heterogeneity were quantified.

CONCLUSIONS

This work demonstrated the possibility of using grape homogenate EEM data, particularly in the region of chlorophyll and anthocyanin fluorescence, to objectively measure grape heterogeneity by developing a variability index. Grape heterogeneity has been shown to impact Cabernet-Sauvignon wine chemical profile and sensory characteristics.3 Therefore, a tool to analyse grape heterogeneity within a winery could aid viticultural and winemaking decisions to achieve wines of targeted quality and style.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Armstrong 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. ,Adam GILMORE, HORIBA Instruments Inc., Piscataway, United States. Paul BOSS, CSIRO Agriculture and Food and Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.  Vinay PAGAY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. David JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.

Contact the author

Keywords

chemometrics, colour, grape maturity, parafac, vineyard variability

Citation

Related articles…

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

Visualization of wine origin, quality level and terroir by the landscape

The communication of the aims of a viticulture under the premise of terroir is presently discussed in a lot of wine-growing regions around the world. To encourage this discussion the differences in knowledge, understanding, and preference concerning wine and landscape should be regarded more closely: the wine should be perceived as a representative of its region and one of the most characteristic features of a region is the landscape.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

In neutral grapes, it is known that most aroma compounds are present as non-volatile
precursors.