Macrowine 2021
IVES 9 IVES Conference Series 9 The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

Abstract

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

METHODS Cabernet-Sauvignon grape bunches were sampled every ten days from veraison through to harvest from the Coonawarra Geographical Indication of South Australia in 2020. After sorting into maturity classes using density baths,1 berries were homogenised and an Aqualog spectrophotometer was used to record the excitation emission matrix (EEM)2 of each maturity class at each sample date. The pre-processed EEM data underwent parallel factor analysis (PARAFAC) to identify the relevant fluorescence regions that discriminated samples based on maturity. The grape homogenate EEM dataset was then used to formulate a variability index.

RESULTS Chlorophyll and anthocyanin fluorescence signals were identified from EEM data at excitation wavelengths in the range 250 – 700 nm and emission wavelengths between 400 – 800 nm in grape homogenate samples using PARAFAC. Discrimination between samples depending on maturity was achieved using PARAFAC. The variability index was calculated and levels of grape heterogeneity were quantified.

CONCLUSIONS

This work demonstrated the possibility of using grape homogenate EEM data, particularly in the region of chlorophyll and anthocyanin fluorescence, to objectively measure grape heterogeneity by developing a variability index. Grape heterogeneity has been shown to impact Cabernet-Sauvignon wine chemical profile and sensory characteristics.3 Therefore, a tool to analyse grape heterogeneity within a winery could aid viticultural and winemaking decisions to achieve wines of targeted quality and style.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Armstrong 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. ,Adam GILMORE, HORIBA Instruments Inc., Piscataway, United States. Paul BOSS, CSIRO Agriculture and Food and Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.  Vinay PAGAY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide. David JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide.

Contact the author

Keywords

chemometrics, colour, grape maturity, parafac, vineyard variability

Citation

Related articles…

Chemical and sensory evolution of total and partial dealcoholized wine in a can

In recent years, wine consumption has been evolving towards new trends. On the one hand, awareness of health and responsible consumption has been growing, and with it, the demand for wines with lower or without alcohol content [1].

Mapping natural terroir units using a multivariate approach and legacy data

This work aimed at setting up a multivariate and geostatistical methodology to map natural terroir units of the viticultural areas at the province scale (1:125,000).

Analytical characterization of Oloroso Sherry in Sherry Cask seasoning and its influence in the ageing of brandy de jerez

Oloroso Sherry is a typical fortified wine from Jerez de la Frontera (south of Spain). It is one of the most used in the seasoning of oak barrels, called Sherry Cask, destined in this area for ageing brandies or condiments as wine vinegars. Brandy de Jerez is an European Geographical Indication for grape-derived spirits. Its special organoleptic characteristics are due to its traditional dynamic ageing in Sherry Casks. American oak is the most common wood employed in Jerez area, where Brandy de Jerez is exclusively manufactured. During ageing period of Sherry and brandies, the wood is not only a container, it is involved in several physicochemical process with the Sherry or the distillate. Oak wood is the responsible of the presence of many compounds in the products, affecting their aroma and chemical composition and having a high influence in their final quality. Moreover, the seasoned wood with Sherry wine could transfer the compounds from wine into the brandy, improving its aroma and flavor.

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Terroir aspects of harvest timing in a cool climate wine region: physiology, berry skin phenolic composition and wine quality

Preliminary experiment of harvest timing was carried out in Eger wine district, Hungary in 2009. In situ physiological responses, berry quality parameters and wine quality of the Kékfrankos grapevine were studied at two growing sites (Eger-K6lyuktet6 – non-stressed, flat vineyard, and Eger-Nagyeged hill – water stressed, steep slope vineyard).