Macrowine 2021
IVES 9 IVES Conference Series 9 Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

Abstract

The use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2]. Even though the International Organization of Vine and Wine approved its industrial use on crushed grapes to favor the extraction of phenolic and aroma compounds during winemaking [3], most of the published studies have generally been carried out at a laboratory scale being very scarce the studies on a semi-industrial and industrial scale [2]. The effect of US, due to cavitation phenomenon, is the developing of shock waves capable of breaking solid surfaces such as cell walls of grape skins and seeds, improving the extraction of those compounds located inside the cells, mainly phenolic compounds. This effect sought with the use of US is similar to that observed when maceration enzymes (E), mainly pectolytic enzymes, are used with the purpose of dissembling the cell wall structure [1]. The combination of both techniques could be a useful tool for improving wine phenolic content if a synergistic effect occurs [1]. The objective of this study is to determine on a semi-industrial scale if the combined use of the US and E at the beginning of the maceration process enhance the effect of both techniques and if the ripening stage of the grapes affects the output of the results, since this factor has been found to interfere with the effect of the enzyme [4].Thereby, pilot scale trials were carried out with Monastrell grapes at two different ripening levels, testing two different maceration times (72 hours and 7 days) at the winery. Vinifications were carried out using both techniques (E and US) separately as well as in combination, also testing if the moment of the enzyme addition (prior to the application of US or added after the grapes had been sonicated) led to differences in the final wine quality. A semi-industrial scale high power ultrasound equipment was used at a sonication frequency of 30kHz. Physicochemical and chromatic parameters by spectrophotometry and high-performance liquid chromatography were analyzed at the time of bottling.The results obtained showed differences depending on the moment of the enzyme addition. When the enzyme was added after the sonication of the crushed grapes, the wine obtained with the less ripen grapes and a 72 hours maceration time presented chromatic characteristics similar to the control wine with 7 days of skin maceration. The effect was much more evident when the same experiment was carried out with the more mature grapes.In conclusion, this study on a semi-industrial scale demonstrated that an adequate combination of these techniques entails an optimization of the maceration process not only in time but also in improving the organoleptic characteristics in wine, the results being of special industrial interest.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paula Pérez-Porras

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belén BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Ricardo JURADO, Agrovin, S.A. Av. De los Vinos s/n, Alcázar de San Juan, 13600 Ciudad Real, Spain. Encarna GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, enzymes, ultrasounds, ripening, phenolic compounds, maceration

Citation

Related articles…

Evaluation of the agronomic performance of cvs. Syrah and tempranillo when grafted on a new series of rootstocks developed in spain

The choice of an adequate rootstock is a key tool to improve the performance of grapevine varieties in different ‘terroirs’, as rootstocks confer adaptation to soil characteristics

What defines the aging signature of Chasselas wines?

Chasselas is a refined grape variety renowned for its subtlety and its remarkable ability to reflect terroir characteristics [1]. Typically consumed young, it is appreciated for its low acidity and delicate fruity and floral aromas.

Focus on terroir studies in the eger wine region of Hungary

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

Synergistic effect of fumaric acid and chitosan on the inhibition of malolactic fermentation

During wine storage and aging, microorganisms capable of degrading malic acid in an undesirable manner can proliferate.

The French grapevine breeding program resdur: state of the art and perspectives

The French grapevine breeding program for durable resistance to downy and powdery mildew (INRAE-ResDur) was initiated more than 20 years ago to help reduce the heavy use of plant protection products and provide a durable mean to cope with a strong pathogen pressure. This program has now proved to be effective, with about ten new varieties already officially registered. However, there is still a lot to be done (1) to reduce the duration of each breeding cycle, (2) to diversify disease factors’ pyramiding and anticipate emerging diseases, (3) to work towards larger adoption of the new resistant varieties. New breeding schemes incorporating for example genomic prediction of breeding values are being evaluated to accelerate genetic gains, saving cost and time while handling complex traits.