Macrowine 2021
IVES 9 IVES Conference Series 9 Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

Abstract

The use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2]. Even though the International Organization of Vine and Wine approved its industrial use on crushed grapes to favor the extraction of phenolic and aroma compounds during winemaking [3], most of the published studies have generally been carried out at a laboratory scale being very scarce the studies on a semi-industrial and industrial scale [2]. The effect of US, due to cavitation phenomenon, is the developing of shock waves capable of breaking solid surfaces such as cell walls of grape skins and seeds, improving the extraction of those compounds located inside the cells, mainly phenolic compounds. This effect sought with the use of US is similar to that observed when maceration enzymes (E), mainly pectolytic enzymes, are used with the purpose of dissembling the cell wall structure [1]. The combination of both techniques could be a useful tool for improving wine phenolic content if a synergistic effect occurs [1]. The objective of this study is to determine on a semi-industrial scale if the combined use of the US and E at the beginning of the maceration process enhance the effect of both techniques and if the ripening stage of the grapes affects the output of the results, since this factor has been found to interfere with the effect of the enzyme [4].Thereby, pilot scale trials were carried out with Monastrell grapes at two different ripening levels, testing two different maceration times (72 hours and 7 days) at the winery. Vinifications were carried out using both techniques (E and US) separately as well as in combination, also testing if the moment of the enzyme addition (prior to the application of US or added after the grapes had been sonicated) led to differences in the final wine quality. A semi-industrial scale high power ultrasound equipment was used at a sonication frequency of 30kHz. Physicochemical and chromatic parameters by spectrophotometry and high-performance liquid chromatography were analyzed at the time of bottling.The results obtained showed differences depending on the moment of the enzyme addition. When the enzyme was added after the sonication of the crushed grapes, the wine obtained with the less ripen grapes and a 72 hours maceration time presented chromatic characteristics similar to the control wine with 7 days of skin maceration. The effect was much more evident when the same experiment was carried out with the more mature grapes.In conclusion, this study on a semi-industrial scale demonstrated that an adequate combination of these techniques entails an optimization of the maceration process not only in time but also in improving the organoleptic characteristics in wine, the results being of special industrial interest.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paula Pérez-Porras

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belén BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain. Ricardo JURADO, Agrovin, S.A. Av. De los Vinos s/n, Alcázar de San Juan, 13600 Ciudad Real, Spain. Encarna GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

wine, grape, enzymes, ultrasounds, ripening, phenolic compounds, maceration

Citation

Related articles…

Evaluation of the effects of pruning methodology on the development of young vines 

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

Inert gases persistence in wine storage tank blanketing

It is common to find tanks in the winery with wine below their capacity due to wine transfers between tanks of different capacities or the interruption of operations for periods of a few days. This situation implies the existence of an ullage space in the tank with prolonged contact with the wine causing its absorption/oxidation. Oxygen uptake from the air headspace over the wine due to differences in the partial pressure of O2 can be rapid, up to 1.5 mL of O2 per liter of wine in one hour and 100 cm2 of surface area1 and up to saturation after 4 hours.

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.