Macrowine 2021
IVES 9 IVES Conference Series 9 Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

Phenolic and volatile profiles of south tyrolean pinot blanc musts and young wines

Abstract

AIM. Assess the impact of different vineyards and winemaking variables on the phenolic and volatile profiles of Pinot Blanc musts and young wines from South Tyrol.

METHODS. Grapes were harvested during September 2019 in 3 vineyards near Ora (Italy) at 450 m (MM), 550 m (K) and 800 m (V) a.s.l. Six different types of Pinot Blanc musts and young wines were studied in 3 replicates. Study A – 3 different vineyards (MM_C, K_C, V_C), but same winemaking; Study B – same vineyard (V), but 3 different vinifications: i) grapes were frozen before crushing (V_F); ii) same as V_F, but co-inoculation yeast/malolactic bacteria (V_F_ML); iii) no grape freezing, but co-inoculation yeast/malolactic bacteria (V_ML). Phenolics were analysed by HPLC-DAD and HPLC-QqQ-MS, while volatiles were investigated by SPME-HS-GCxGC-ToF-MS. Standard oenological parameters were measured using a multi-parametric analyser, alcohol distillation, pH-meter and chemical titration. The data were statistically processed with ANOVA and Principal Component Analysis (PCA).

RESULTS. Upon a dataset of 27 phenolic compounds identified in musts, a good separation among samples was achieved using PCA. The musts produced without pre-fermentative grape freezing had significantly higher amounts of catechin, gallocatechin and astilbin. Besides, the musts from the same vineyard, but with frozen grapes showed higher concentrations of ethanol, glucose-fructose, malic acid, and lower concentration of tartaric acid. 46 phenolic compounds were identified in wines. The PCA separated well the samples of Study A: caftaric acid showed the most significant difference as well as the highest relative abundance. The PCA showed that the phenolic profile of the wines of Study B (V_C, V_F, V_F_ML, V_ML) clustered samples based on the pre-fermentative grape freezing. Wines made without frozen grapes were separated due to the higher phenolic concentrations. The volatile profile of wines after 1 month of storage contained 32 compounds. The PCA not only grouped samples according to the grape freezing, but it also showed that wines with no applied grape freezing were well clustered in terms of the presence/absence of malolactic fermentation in their winemaking. V_C samples were described by higher abundances of branched chain alcohols, while samples V_ML – by ethyl and phenylethyl esters.

CONCLUSIONS

The profiles of phenolics and volatiles were good discriminants of South Tyrolean Pinot Blanc wines produced under the same winemaking technology but harvested in different vineyards. In this study, the pre-fermentative grape freezing negatively affected concentrations of phenolics. The literature shows that freezing positively enhances contents only of anthocyanins and flavanol glucosides, while it negatively affects contents of phenolic acids and flavanols, that are main phenolic compound in white wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vakare Merkyte

1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy,Simone POGGESI, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Edoardo LONGO, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Fabian STENICO, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Giulia WINDISCH, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy Emanuele BOSELLI, 1. Free University of Bozen-Bolzano, Faculty of Science and Technology, Piazza Università 5, 39100 Bozen-Bolzano, Italy; 2. Oenolab, NOI Techpark South Tyrol, Via A. Volta 13B, 39100 Bozen-Bolzano, Italy

Contact the author

Keywords

pinot blanc; white wine; phenolic profile; volatile profile; grape freezing; malolactic fermentation; chemical markers; vinification practices

Citation

Related articles…

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Vitamins in grape must: let’s lift a corner of the veil

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades.

Phenolic composition of Tempranillo Blanco grapes changes after foliar application of urea

Our research aimed to determine the effect and efficiency of foliar application of urea on the phenolic composition of Tempranillo Blanco grapes. The field experiment was carried out in 2019 and 2020 seasons and the plot was located in D.O.Ca Rioja (North of Spain). The vineyard was Vitis vinifera L. Tempranillo Blanco and grafted on Richter-110 rootstock. The treatments were control (C), whose plants were sprayed with water and three doses of urea: plants were sprayed with urea 3 kg N/ha (U3), 6 kg N/ha (U6) and 9 kg N/ha (U9). The applications were performed in two phenological stages, pre-veraison (Pre) and veraison (Ver). Also, each of the treatments was repeated one week later. Control and treatments were performed in triplicate and arranged in a randomised block design. Grapes were harvested at optimum ripening stage. High-performance liquid chromatography was used to analyse the phenolic composition of the grapes. Finally, the results obtained from the analytical determinations – flavonols, flavanols and non-flavonoid (hydroxybenzoic acids, hydroxycinnamic acids and stilbenes) – were studied statistically by analysis of variance. The results showed that, in 2019, U6-Pre and U9-Pre treatments increased the hydroxybenzoic acid content in grapes, and also all foliar treatments applied at Pre enhanced the stilbene concentration. Moreover, U3-Ver was the only treatment that rose flavonol and stilbene contents in the Tempranillo Blanco grapes. In 2020, all treatments applied at Pre enhanced the flavonol concentration in grapes. Furthermore, U3-Pre and U9-Pre treatments increased stilbene content in grapes. Nevertheless, the hydroxybenzoic acid content was improved by U6-Ver and U9-Ver and besides, hydroxycinnamic acid concentration in grapes was increased by all treatments applied at Ver. In conclusion, the lower and highest dose of urea (U3 and U9), applied at pre-veraison, were the best treatments to improve the Tempranillo Blanco grape phenolic composition.

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.