Macrowine 2021
IVES 9 IVES Conference Series 9 Application of ultrasonic and refractometric measurements in enological samples and related model solutions

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

Abstract

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars. Ultrasonic based technology is emerging as a well-suited tool for monitoring food processes and quality, and in particular it has been applied in predicting the alcohol content and measuring the ultrasonic velocity in enological products. The aim of this study is to combine the applications of these two technologies to quantify alcohol and residual sugar in real and model enological samples. The effects of major wine and must components on the combined application of these analytical tools are investigated.

METHODS: Refractometric and sonic Brix values were determined using a LP10 sensor (Maselli Misure, Parma, Italy) working at controlled temperature. The selection of the real enological samples for the study has been made during the 2020 harvest in South Tyrol (Italy). The model solutions were prepared at different combinations of different levels of ethanol in water, glucose, tartaric acid, malic acid and gallic acid as major wine components. For these model solutions, firstly the levels of each component were chosen upon a likelihood criterium, then to reduce the number of analyses to run. A refined randomized selection of these combinations was chosen according to a D-Optimal experimental design, calculated on the R-based application CAT, with a large enough number of selected experiments to ensure representativeness. The statistical analysis of the results for the real and model samples has been performed on CAT and XLStat (Addinsoft, France).

RESULTS: A statistical analysis of the obtained results allowed to investigate the effects of the major constituents on the Brix and alcohol determinations by combined refractometric and acoustic analyses, in real and model enological samples. The calculated models showed that the effects of interactions between variables/chemical components and non-linear contributions cannot be a priori ruled out in order to accurately explain the instrumental responses to the variations of these major components. As an alternative, the evaluation of separate models for more limited experimental domains (e.g. only musts, only dry wines or musts undergoing fermentation) is also discussed. The effects of the residual sugar and alcohol content on the determination of refractive and sonic Brix are discussed in detail.

CONCLUSIONS

In samples collected during fermentations or in wines, the application of this combined technique for residual sugar and alcohol determinations could be feasible, provided that the full dependence of these refractometric and acoustic parameters on the major sample components and their interactions is well understood, and the related mathematical models validated over the widest possible range of enological samples. Some mathematical models have been proposed and discussed along with validation.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Matteo Sesenna

Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy,Edoardo, LONGO, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy  Alessandro, FORNASIER, University of Turin (Italy), DISAFA – Food Science and Technology  Luca ROLLE University of Turin (Italy), DISAFA – Food Science and Technology  Ulrich PEDRI, Institute for Fruit Growing and Viticulture, Laimburg Research Center, Laimburg 6, I-39051 Pfatten, Italy  Danila CHIOTTI, Institute for Fruit Growing and Viticulture, Laimburg Research Center, Laimburg 6, I-39051 Pfatten, Italy  Emanuele, BOSELLI, Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy; Oenolab, NOITechpark, via Alessandro Volta 13, 39100 Bolzano BZ, Italy

Contact the author

Keywords

refractometric brix; ultrasonic brix; sugars; ethanol

Citation

Related articles…

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

A multidisciplinary approach to assess the impact of future drought scenarios on vineyard ecosystems

Drought events can strongly affect grapevine and berry physiology and subsequent wine quality, as widely demonstrated in controlled experiments.

Influence of phenolic composition and antioxidant properties on the ageing potential of Syrah red wines measured by accelerated ageing tests.

Red wine ageing impacts its chemical and sensory characteristics such as colour, astringency and aromas evolution. Wine ageing involves many chemicals and physico-chemical reactions. Oxygen has an important role in these evolutions, especially during bottle ageing. It is known that wine composition and its antioxidant capacity are correlated to its ability to undergo with oxygen exposure [1]. A high oxygen exposure can affect wine quality by the formation of undesirable oxidative volatile compounds such as acetaldehyde [2]. Thus, ageing capacity is an important factor for wine quality and is related to extent of oxidation with ageing [3].

Mechanisms responsible for different susceptibility of grapevine varieties to flavescence dorée

Flavescence dorée (FD) is the most serious grapevine yellows disease in Europe. It is caused by phytoplasmas which are transmitted from grapevine to grapevine by the leafhopper Scaphoideus titanus.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.