Macrowine 2021
IVES 9 IVES Conference Series 9 Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Abstract

The final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes. One possible cause of this low concentration is the interactions between the suspended mesocarp and skin cell walls and phenolic compounds during the maceration process of red wine [1]. Most of these aggregates that are formed by these interactions are insoluble and end up precipitating forming, together with the yeast cell walls, the lees. Maceration enzymes have the ability to degrade the polysaccharides that represent the major components of the cell wall, which it is why these enzymes could lead to the release of phenolic compounds previously absorbed by the cell walls. Ultrasound (US) has been used in oenology as a technology to break cell structures through cavitation and facilitates the release of compounds of interest from the cell interior [2,3], and, precisely because of this capacity, US could also promote the desorption of phenolic compounds precipitated with lees.The objective of this work is to determine the capacity of two different techniques, the use of enzymes and/or the application of high power ultrasounds (US) to release those anthocyanins and tannins adsorbed in the lees. Both techniques seek the degradation (enzymes) or disruption (US) of the structures of the cell walls, to facilitate the desorption of the phenolic compounds.The lees from a red wine vinification were recovered, dissolved in a model ethanolic solution and treated, at laboratory scale, with enzymes and/or ultrasounds. Three different commercial enzymes were used: two different pectolytic enzymes and glucanase. The best sonication conditions were previously tested in order to find the optimal treatment conditions. The chromatic characteristics of the model solution and anthocyanins and tannins recovery were analyzed after the treatments. Anthocyanins and tannins were quantified and characterized by liquid chromatography. In addition, the soluble polysaccharides and tannins extracted from the lees after the treatments were analyzed by size exclusion chromatography.The results of this study could be of interest for the valorization of the lees, as a winery byproduct, by recovering the adsorbed compounds but also we add light into possible enological procedures for facilitating and accelerating the aging on lees, through the liberation, first of all, of polysaccharides from the lees but also those phenolic compounds lost during vinification.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea  Osete Alcaraz

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belen, BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Encarna, GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Paula, PÉREZ-PORRAS, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Raquel, SANCHEZ-BERNAL, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

anthocyanins, tannins, ultrasound, enzymes, lees

Citation

Related articles…

Ripening of cv. Cabernet Sauvignon grapes: polysaccharides fractions evolution and phenolic extractability

Polysaccharides and more specifically pectins, make up a significant portion of the cell wall material of the plant cells including the grapes. During the fruit ripening the associated softening is related to the breakdown of the cell wall polysaccharides. During this process, it is expected that polysaccharides that are soluble in red wine will be formed influencing its texture. Anthocyanins are responsible for the wine color and tannins for the astringency, body and bitterness of the wine. In the skins, these compounds are located in the cell vacuoles and the barrier that conditions their extractability is the skin cell wall that may determine the mechanical resistance, the texture and the ease of processing berries. The aim of this work was study the evolution of the polysaccharides and the anthocyanin and tannin extractability during the ripening period in Cabernet Sauvignon grapes, trying to correlate these variables.

Genome wide association mapping of phenology related traits in Vitis vinifera L

Climate change, with rise in temperatures, is leading to an advance in the dates of phenological stages, with a loss in quality of the grape final product. Therefore, the understanding of the genetic determinants driving the phenological stages of flowering, veraison and the interval between them, represents a target for the development of grapevine’s cultivar adapted to the changing environment.
Here we conducted a GWA study to identify SNPs significantly associated to flowering time, veraison time and to the interval among them. A germplasm collection (CREA-VE in Susegana, Treviso, Italy) including 649 grapevine’s cultivar representing 365 unique genotypes was considered.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

Foldable lyre as an alternative to improve yield and oenological potential of grapes for a sustainable viticulture

Actually, many countries around the world are studying different strategies for adapting winegrowing regions to climate changes, focusing on a sustainable viticulture.