Macrowine 2021
IVES 9 IVES Conference Series 9 Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Abstract

The final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes. One possible cause of this low concentration is the interactions between the suspended mesocarp and skin cell walls and phenolic compounds during the maceration process of red wine [1]. Most of these aggregates that are formed by these interactions are insoluble and end up precipitating forming, together with the yeast cell walls, the lees. Maceration enzymes have the ability to degrade the polysaccharides that represent the major components of the cell wall, which it is why these enzymes could lead to the release of phenolic compounds previously absorbed by the cell walls. Ultrasound (US) has been used in oenology as a technology to break cell structures through cavitation and facilitates the release of compounds of interest from the cell interior [2,3], and, precisely because of this capacity, US could also promote the desorption of phenolic compounds precipitated with lees.The objective of this work is to determine the capacity of two different techniques, the use of enzymes and/or the application of high power ultrasounds (US) to release those anthocyanins and tannins adsorbed in the lees. Both techniques seek the degradation (enzymes) or disruption (US) of the structures of the cell walls, to facilitate the desorption of the phenolic compounds.The lees from a red wine vinification were recovered, dissolved in a model ethanolic solution and treated, at laboratory scale, with enzymes and/or ultrasounds. Three different commercial enzymes were used: two different pectolytic enzymes and glucanase. The best sonication conditions were previously tested in order to find the optimal treatment conditions. The chromatic characteristics of the model solution and anthocyanins and tannins recovery were analyzed after the treatments. Anthocyanins and tannins were quantified and characterized by liquid chromatography. In addition, the soluble polysaccharides and tannins extracted from the lees after the treatments were analyzed by size exclusion chromatography.The results of this study could be of interest for the valorization of the lees, as a winery byproduct, by recovering the adsorbed compounds but also we add light into possible enological procedures for facilitating and accelerating the aging on lees, through the liberation, first of all, of polysaccharides from the lees but also those phenolic compounds lost during vinification.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea  Osete Alcaraz

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belen, BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Encarna, GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Paula, PÉREZ-PORRAS, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Raquel, SANCHEZ-BERNAL, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

anthocyanins, tannins, ultrasound, enzymes, lees

Citation

Related articles…

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

Optical visualization of embolism spread in drought‐induced leaves: revealing differences across three grapevine genotypes

‐Evaluation of xylem embolism is an important challenge in identifying drought tolerant genotypes within the context of climate change.

ESTIMATING THE INITIAL OXYGEN RELEASE (IOR) OF CORK CLOSURES

Many factors influence aging of bottled wine, oxygen transfer through the closure is included. The maximum uptake of wine before oxidation begins varies from 60 mg.L-¹ to 180 mg.L-1 for white and red wines respectively [1].
The process of bottling may lead to considerable amounts of oxygen. The actual contribution of the transfer through the closure system becomes relevant at the bottle storage, but the amounts are small compared to prepacking operations [2] and to the total oxygen attained during filling.

Texas terroir: gis characterization of the texas high plains ava

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region.