Macrowine 2021
IVES 9 IVES Conference Series 9 Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Desorption of phenolic compounds bound to lees by combining hydrolytic enzymes and ultrasounds

Abstract

The final concentration of phenolic compounds in the wines is usually lower than what might be expected given the phenolic concentration measured in grapes. One possible cause of this low concentration is the interactions between the suspended mesocarp and skin cell walls and phenolic compounds during the maceration process of red wine [1]. Most of these aggregates that are formed by these interactions are insoluble and end up precipitating forming, together with the yeast cell walls, the lees. Maceration enzymes have the ability to degrade the polysaccharides that represent the major components of the cell wall, which it is why these enzymes could lead to the release of phenolic compounds previously absorbed by the cell walls. Ultrasound (US) has been used in oenology as a technology to break cell structures through cavitation and facilitates the release of compounds of interest from the cell interior [2,3], and, precisely because of this capacity, US could also promote the desorption of phenolic compounds precipitated with lees.The objective of this work is to determine the capacity of two different techniques, the use of enzymes and/or the application of high power ultrasounds (US) to release those anthocyanins and tannins adsorbed in the lees. Both techniques seek the degradation (enzymes) or disruption (US) of the structures of the cell walls, to facilitate the desorption of the phenolic compounds.The lees from a red wine vinification were recovered, dissolved in a model ethanolic solution and treated, at laboratory scale, with enzymes and/or ultrasounds. Three different commercial enzymes were used: two different pectolytic enzymes and glucanase. The best sonication conditions were previously tested in order to find the optimal treatment conditions. The chromatic characteristics of the model solution and anthocyanins and tannins recovery were analyzed after the treatments. Anthocyanins and tannins were quantified and characterized by liquid chromatography. In addition, the soluble polysaccharides and tannins extracted from the lees after the treatments were analyzed by size exclusion chromatography.The results of this study could be of interest for the valorization of the lees, as a winery byproduct, by recovering the adsorbed compounds but also we add light into possible enological procedures for facilitating and accelerating the aging on lees, through the liberation, first of all, of polysaccharides from the lees but also those phenolic compounds lost during vinification.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andrea  Osete Alcaraz

Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.,Ana Belen, BAUTISTA-ORTÍN, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Encarna, GÓMEZ-PLAZA, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Paula, PÉREZ-PORRAS, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.  Raquel, SANCHEZ-BERNAL, Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, 30100 Murcia, Spain.

Contact the author

Keywords

anthocyanins, tannins, ultrasound, enzymes, lees

Citation

Related articles…

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Market analysis of Chilean Pinot noir, Carménère, and Cabernet-Sauvignon wines: A comparative study of chemical parameters across low, medium, and high price segments

Wine quality is a complex concept determined by multiple factors, including vineyard management, winemaking operations, and the sensory perception of key attributes.

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Photodegradation of retsina wine: does pine resin protect against light-induced changes?

Retsina is a wine deeply rooted in Greek tradition but often misunderstood, largely due to the poor quality associated with past production. Historically, pine resin was used to seal wine transport containers, and over time, its distinctive aroma led to its intentional incorporation into winemaking.

Perceptive interactions and wine typical fruity aroma 

In this study we developed a methodology to prepare aromatic reconstitutions from fractions of a wine organic extract and we assessed these reconstitutions both in wine model solution and in de- aromatized wine.