Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Abstract

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

METHODS: Commercial Cabernet wines (n = 52) from Coonawarra, Margaret River, and Yarra Valley Geographical Indications of Australia, and from Bordeaux, France, were selected for extensive chemical and sensory analysis.1 A range of analytical methods were optimised to quantify a comprehensive array of volatile compounds (> 70) originating from different sources, including grape, fermentation, oak maturation, and ageing. Along with basic chemical data, measurement of non-volatile compounds such as tannins and other secondary metabolites and elements was also undertaken. Multivariate statistical analysis using partial least squares regression was applied to the combined chemical data and the sensory analysis ratings obtained through a trained descriptive analysis panel of the same wines, to determine important compounds driving relevant sensory attributes.

RESULTS: The compound 1,4-cineole, described as ‘mint’ and ‘bay leaf’, was partly responsible for separation of the Cabernet Sauvignon wines from the Australian regions, particularly from Margaret River, whereas compounds such as 4-ethylphenol and 4-ethylguaiacol were linked to the aromas of ‘earthy’ and ‘yeasty’, which drove some of the separation of Bordeaux wines from the others. Varietal thiol, 3-mercapto-1-hexanol, which is mainly associated with Sauvignon Blanc and other white wine varieties, was measured in concentrations above its aroma detection threshold in all of the wines analysed, with similar concentrations present in Bordeaux and Coonawarra wines, and significantly higher concentrations in Margaret River and Yarra Valley wines. Additionally, non-volatiles such as particular elements drove some the separation between the regions; for example strontium was present in highest concentration in the Coonawarra wines and was found at lowest concentration in the Bordeaux wines. Free anthocyanins were also found to differ between Coonawarra and Bordeaux regions, with higher concentration being measured in the latter.

CONCLUSION

In determining the influential drivers of sensory properties of regional Cabernet Sauvignon wines, this study has uncovered various volatile and non-volatile constituents that are associated with specific sensory attributes. This is an important step in being able to define and subsequently help preserve the distinctive characters associated with regional Cabernet Sauvignon wines.

 

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dimitra L. Capone 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide,Paul BOSS, CSIRO, and Australian Research Council Training Centre for Innovative Wine Production  Lira SOUZA GONZAGA, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide  Susan E. P. BASTIAN, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide Ruchira RANAWEERA, Department of Wine Science, The University of Adelaide David W. JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide

Contact the author

Keywords

volatile compound, non-volatile compound, sensory analysis, partial least squares regression, regionality, terroir

Citation

Related articles…

Microbial stabilization of wines using innovative coiled UV-C reactor process: impact on chemical and organoleptic proprieties

For several years, numerous studies aimed at limiting the use of SO2 in wines (thermal treatments, pulsed electric fields, microwaves …). Processes must be able to preserve the organoleptic qualities of wines with low energy consumption. In this context, ultraviolet radiations (UV-C), at 254 nm, are well known for their germicidal proprieties. In order to inactivate microorganisms in grape juice and wine without affecting the quality of the product, efficiency of UV-C treatment process should be optimized.

The role of terroir in tourism led amenity migration: contrasting effects in Tuscany and the Okanagan valley of British Columbia

Definitions of terroir elude consistent agreement. As defined geographical space the common denominators of its conceptualization include natural and cultural elements of life

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Pacific Northwest wine regions and climates

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia.

L’évolution des Appellations d’Origine aux Etats-Unis

Un peu d’histoire pour nous efforcer de mettre le sujet des appellations dans un contexte général. Six cents ans avant Jésus-Christ, le Côte du Rhône était plantée en vignes peu après l’arrivée des Grecs