Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Abstract

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

METHODS: Commercial Cabernet wines (n = 52) from Coonawarra, Margaret River, and Yarra Valley Geographical Indications of Australia, and from Bordeaux, France, were selected for extensive chemical and sensory analysis.1 A range of analytical methods were optimised to quantify a comprehensive array of volatile compounds (> 70) originating from different sources, including grape, fermentation, oak maturation, and ageing. Along with basic chemical data, measurement of non-volatile compounds such as tannins and other secondary metabolites and elements was also undertaken. Multivariate statistical analysis using partial least squares regression was applied to the combined chemical data and the sensory analysis ratings obtained through a trained descriptive analysis panel of the same wines, to determine important compounds driving relevant sensory attributes.

RESULTS: The compound 1,4-cineole, described as ‘mint’ and ‘bay leaf’, was partly responsible for separation of the Cabernet Sauvignon wines from the Australian regions, particularly from Margaret River, whereas compounds such as 4-ethylphenol and 4-ethylguaiacol were linked to the aromas of ‘earthy’ and ‘yeasty’, which drove some of the separation of Bordeaux wines from the others. Varietal thiol, 3-mercapto-1-hexanol, which is mainly associated with Sauvignon Blanc and other white wine varieties, was measured in concentrations above its aroma detection threshold in all of the wines analysed, with similar concentrations present in Bordeaux and Coonawarra wines, and significantly higher concentrations in Margaret River and Yarra Valley wines. Additionally, non-volatiles such as particular elements drove some the separation between the regions; for example strontium was present in highest concentration in the Coonawarra wines and was found at lowest concentration in the Bordeaux wines. Free anthocyanins were also found to differ between Coonawarra and Bordeaux regions, with higher concentration being measured in the latter.

CONCLUSION

In determining the influential drivers of sensory properties of regional Cabernet Sauvignon wines, this study has uncovered various volatile and non-volatile constituents that are associated with specific sensory attributes. This is an important step in being able to define and subsequently help preserve the distinctive characters associated with regional Cabernet Sauvignon wines.

 

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dimitra L. Capone 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide,Paul BOSS, CSIRO, and Australian Research Council Training Centre for Innovative Wine Production  Lira SOUZA GONZAGA, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide  Susan E. P. BASTIAN, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide Ruchira RANAWEERA, Department of Wine Science, The University of Adelaide David W. JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide

Contact the author

Keywords

volatile compound, non-volatile compound, sensory analysis, partial least squares regression, regionality, terroir

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Stabulation (lees stirring) in must as a method for aroma intensification: A comparison with skin contact and a classical version of Traminer and Sauvignon blanc in Austria

In the course of this study, stabilisation (lees stirring in unclarified must) with skin contact and classic white wine vinification were compared for the Sauvignon blanc and Traminer varieties in Austria. The test wines were analysed for the volatile substances esters, free monoterpenes and fruity thiols

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements. In each condition, the same two wines were blind tasted: a wine previously defined as delicate – a Pinot Noir from Australia, and a wine known for its robust character – a Tannat from Uruguay.