Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Abstract

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

METHODS: Commercial Cabernet wines (n = 52) from Coonawarra, Margaret River, and Yarra Valley Geographical Indications of Australia, and from Bordeaux, France, were selected for extensive chemical and sensory analysis.1 A range of analytical methods were optimised to quantify a comprehensive array of volatile compounds (> 70) originating from different sources, including grape, fermentation, oak maturation, and ageing. Along with basic chemical data, measurement of non-volatile compounds such as tannins and other secondary metabolites and elements was also undertaken. Multivariate statistical analysis using partial least squares regression was applied to the combined chemical data and the sensory analysis ratings obtained through a trained descriptive analysis panel of the same wines, to determine important compounds driving relevant sensory attributes.

RESULTS: The compound 1,4-cineole, described as ‘mint’ and ‘bay leaf’, was partly responsible for separation of the Cabernet Sauvignon wines from the Australian regions, particularly from Margaret River, whereas compounds such as 4-ethylphenol and 4-ethylguaiacol were linked to the aromas of ‘earthy’ and ‘yeasty’, which drove some of the separation of Bordeaux wines from the others. Varietal thiol, 3-mercapto-1-hexanol, which is mainly associated with Sauvignon Blanc and other white wine varieties, was measured in concentrations above its aroma detection threshold in all of the wines analysed, with similar concentrations present in Bordeaux and Coonawarra wines, and significantly higher concentrations in Margaret River and Yarra Valley wines. Additionally, non-volatiles such as particular elements drove some the separation between the regions; for example strontium was present in highest concentration in the Coonawarra wines and was found at lowest concentration in the Bordeaux wines. Free anthocyanins were also found to differ between Coonawarra and Bordeaux regions, with higher concentration being measured in the latter.

CONCLUSION

In determining the influential drivers of sensory properties of regional Cabernet Sauvignon wines, this study has uncovered various volatile and non-volatile constituents that are associated with specific sensory attributes. This is an important step in being able to define and subsequently help preserve the distinctive characters associated with regional Cabernet Sauvignon wines.

 

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dimitra L. Capone 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide,Paul BOSS, CSIRO, and Australian Research Council Training Centre for Innovative Wine Production  Lira SOUZA GONZAGA, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide  Susan E. P. BASTIAN, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide Ruchira RANAWEERA, Department of Wine Science, The University of Adelaide David W. JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide

Contact the author

Keywords

volatile compound, non-volatile compound, sensory analysis, partial least squares regression, regionality, terroir

Citation

Related articles…

Estimating grapevine crop coefficients at high-resolution using open-source satellite data

Climate change results in increasing water stress due to co-effects of rising evapotranspiration (ET) and decreased precipitation over the past 65 years (Spinoni et al. 2019).

Measurements of the oxygen dissolved in white wines elaborated in barrels without to open the bung of the barrels

Bases on oxoluminescence, we have developed an innovative device for measuring dissolved oxygen in wines in barrels without opening the bung. This system is directly inserted into the wood during the barrel elaboration and can be positioned at different locations of the barrel (the head, the hull …). During two successive vintages we have used this device notably to follow the oxygen dissolved of whites wines elaborated in barrels. This allowed us initially to monitor the oxygen levels of the harvest to bottling the whole elaboration process in barrels of white wines without using techniques of measurement suitable to modify the real values in wines (opening the bung to plunge an oximeter).

Pacific Northwest wine regions and climates

This paper presents a review of wine regions in the Pacific Northwest (PNW) of North America. The PNW consists of the states of Oregon, Washington and Idaho and the province of British Columbia.

The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions

This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.)

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.