Macrowine 2021
IVES 9 IVES Conference Series 9 Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Chemical and sensory diversity of regional Cabernet-Sauvignon wines

Abstract

AIM: To investigate chemical and sensory drivers of regional typicity of Cabernet Sauvignon from different geographical regions of Australia.

METHODS: Commercial Cabernet wines (n = 52) from Coonawarra, Margaret River, and Yarra Valley Geographical Indications of Australia, and from Bordeaux, France, were selected for extensive chemical and sensory analysis.1 A range of analytical methods were optimised to quantify a comprehensive array of volatile compounds (> 70) originating from different sources, including grape, fermentation, oak maturation, and ageing. Along with basic chemical data, measurement of non-volatile compounds such as tannins and other secondary metabolites and elements was also undertaken. Multivariate statistical analysis using partial least squares regression was applied to the combined chemical data and the sensory analysis ratings obtained through a trained descriptive analysis panel of the same wines, to determine important compounds driving relevant sensory attributes.

RESULTS: The compound 1,4-cineole, described as ‘mint’ and ‘bay leaf’, was partly responsible for separation of the Cabernet Sauvignon wines from the Australian regions, particularly from Margaret River, whereas compounds such as 4-ethylphenol and 4-ethylguaiacol were linked to the aromas of ‘earthy’ and ‘yeasty’, which drove some of the separation of Bordeaux wines from the others. Varietal thiol, 3-mercapto-1-hexanol, which is mainly associated with Sauvignon Blanc and other white wine varieties, was measured in concentrations above its aroma detection threshold in all of the wines analysed, with similar concentrations present in Bordeaux and Coonawarra wines, and significantly higher concentrations in Margaret River and Yarra Valley wines. Additionally, non-volatiles such as particular elements drove some the separation between the regions; for example strontium was present in highest concentration in the Coonawarra wines and was found at lowest concentration in the Bordeaux wines. Free anthocyanins were also found to differ between Coonawarra and Bordeaux regions, with higher concentration being measured in the latter.

CONCLUSION

In determining the influential drivers of sensory properties of regional Cabernet Sauvignon wines, this study has uncovered various volatile and non-volatile constituents that are associated with specific sensory attributes. This is an important step in being able to define and subsequently help preserve the distinctive characters associated with regional Cabernet Sauvignon wines.

 

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Dimitra L. Capone 

Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide,Paul BOSS, CSIRO, and Australian Research Council Training Centre for Innovative Wine Production  Lira SOUZA GONZAGA, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide  Susan E. P. BASTIAN, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide Ruchira RANAWEERA, Department of Wine Science, The University of Adelaide David W. JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, and The University of Adelaide

Contact the author

Keywords

volatile compound, non-volatile compound, sensory analysis, partial least squares regression, regionality, terroir

Citation

Related articles…

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).

“Zonation”: interpretation and estimation of “Great zonation” (GZ) following the base methodology of “GRANDE FILIERA” (GF) (Great chain)

Dans des travaux précédents sur le zonage, on a traité de la « Grande Filière », du « terroir », du « territoire », de la «″Terra »″ (« Terre »”), des « Petits zonages ou sub-zonages », du « Grand Zonage », de la qualité (nous en avons classifié plus de quatre-vingt-dix), des « Grands Objectifs » (GO) de l’activité vitivinicole et des moyens utilisés pour les atteindre. Dans le « GRAND ZONAGE » (GZ) nous avons précisé que pour zoner, nous partons des aspects

Within vineyard temperature structure and variability in the umpqua valley of Oregon

Climate influences viticulture and wine production at various scales with the majority of attention given to regional characteristics that define the general varieties that can be grown and the wine styles that can be produced.

Essai de maîtrise optimisée de la vigueur de deux clones de chenin sur schistes verts du carbonifère en zone A.O.C. Coteaux du Layon

Les buts principaux de cet essai, sont la mise en évidence des effets traitement agroviticole et millésime, par une recherche de liens entre les données vendanges et sensorielles des vins issus.