Macrowine 2021
IVES 9 IVES Conference Series 9 The role and quantification of vitamins in wine: what do we know?

The role and quantification of vitamins in wine: what do we know?

Abstract

AIM: Vitamins are essential compounds to numerous organisms, including yeasts, and appear highly significant during winemaking processes. Acting as cofactors in major yeast metabolic pathways, such as those of alcohols, amino acids and fatty acids, it appears very likely that their involvement in fermentation courses, as well as in the development of aromatic compounds in wine is consequential.

METHODS: Numerous assays have been developed to determine and quantify vitaminic contents in grape musts and wines. Microbial assays, relying on the specific growth requirements of selected microorganisms, were the earliest methods used pursuing this goal, however poorly precise and accurate. Methods relying on vitamin properties, such as acid titrations and spectrophotometry have also been used to quantify vitamins in grape musts and wines, although they require specific physicochemical properties, and do not allow for simultaneous determination of several vitamin groups.

RESULTS: As a consequence, contemporary techniques, such as chromatography-based methods, stand as efficient means to quantify vitamins in grape musts. However, no method has recently been developed to assay vitamin contents in this specific matrix. Similarly, assays relying on spectroscopy and electrophoresis, proved efficient in simultaneously quantifying vitamins in several fruit matrixes, appear promising for extension towards the grape must and wine matrixes. In addition, winemaking processes, such as the addition of sulfites or clarifying agents, or vatting lengths have been shown to significantly impact vitamin contents.

CONCLUSION

The development of more methods to quantify vitamins in grape musts, relying on more sensitive and precise recent analytical techniques could offer ground for a broad range of prospects in the wine science field. Such developments could support better comprehensions of yeast requirements during winemaking, and allow for finer modulations of the processes, as well as elucidate the role of vitamins in the development of aroma in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Sarah Evers

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS-Institut Universitaire de la Vigne et du Vin, 2 rue Claude Ladrey, 21000 Dijon, France SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France,Chloé ROULLIER-GALL, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS-Institut Universitaire de la Vigne et du Vin, 2 rue Claude Ladrey, 21000 Dijon, France Christophe MORGE, SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France Celine SPARROW, SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France Antoine GOBERT, SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France Hervé ALEXANDRE, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS-Institut Universitaire de la Vigne et du Vin, 2 rue Claude Ladrey, 21000 Dijon, France

Contact the author

Keywords

vitamins ; fermentation ; enology ; yeasts ; metabolism

Citation

Related articles…

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Bud fruitfulness in Vitis vinifera L. cv. Chardonnay in cool climate regions in South Africa

Bud fruitfulness is a key determinant of the potential and the actual yield. The formation of the grapevine yield spans over a period of two consecutive growing seasons (Ferrara & Mazzeo, 2023).

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Vitis vinifera ‘Ráthay’ on the rootstocks ‘Kober 5BB’, ‘Fercal’, and ‘3309 C’: results of a long-term field trial

Context and purpose of the study. Ráthay is an Austrian red quality wine variety with increased resistance to fungi.

Dimethyl sulfide: a compound of interest from grape to wine glass

The overall quality of fine wines is linked to the development of “bouquet” during wine bottle ageing1. Several chemical reactions, occurring in atmosphere protected from oxygen, are favourable to the formation and preservation of sulphur compounds such as dimethyl sulfide (DMS). DMS accumulate in wines thanks to hydrolysis of its precursors (DMSp) mainly constituted by S-