Macrowine 2021
IVES 9 IVES Conference Series 9 The role and quantification of vitamins in wine: what do we know?

The role and quantification of vitamins in wine: what do we know?

Abstract

AIM: Vitamins are essential compounds to numerous organisms, including yeasts, and appear highly significant during winemaking processes. Acting as cofactors in major yeast metabolic pathways, such as those of alcohols, amino acids and fatty acids, it appears very likely that their involvement in fermentation courses, as well as in the development of aromatic compounds in wine is consequential.

METHODS: Numerous assays have been developed to determine and quantify vitaminic contents in grape musts and wines. Microbial assays, relying on the specific growth requirements of selected microorganisms, were the earliest methods used pursuing this goal, however poorly precise and accurate. Methods relying on vitamin properties, such as acid titrations and spectrophotometry have also been used to quantify vitamins in grape musts and wines, although they require specific physicochemical properties, and do not allow for simultaneous determination of several vitamin groups.

RESULTS: As a consequence, contemporary techniques, such as chromatography-based methods, stand as efficient means to quantify vitamins in grape musts. However, no method has recently been developed to assay vitamin contents in this specific matrix. Similarly, assays relying on spectroscopy and electrophoresis, proved efficient in simultaneously quantifying vitamins in several fruit matrixes, appear promising for extension towards the grape must and wine matrixes. In addition, winemaking processes, such as the addition of sulfites or clarifying agents, or vatting lengths have been shown to significantly impact vitamin contents.

CONCLUSION

The development of more methods to quantify vitamins in grape musts, relying on more sensitive and precise recent analytical techniques could offer ground for a broad range of prospects in the wine science field. Such developments could support better comprehensions of yeast requirements during winemaking, and allow for finer modulations of the processes, as well as elucidate the role of vitamins in the development of aroma in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Sarah Evers

University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS-Institut Universitaire de la Vigne et du Vin, 2 rue Claude Ladrey, 21000 Dijon, France SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France,Chloé ROULLIER-GALL, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS-Institut Universitaire de la Vigne et du Vin, 2 rue Claude Ladrey, 21000 Dijon, France Christophe MORGE, SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France Celine SPARROW, SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France Antoine GOBERT, SAS Sofralab, 79, Avenue A.A. Thévenet, BP 1031, Magenta, France Hervé ALEXANDRE, University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, VAlMiS-Institut Universitaire de la Vigne et du Vin, 2 rue Claude Ladrey, 21000 Dijon, France

Contact the author

Keywords

vitamins ; fermentation ; enology ; yeasts ; metabolism

Citation

Related articles…

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

The Cognac industry: history, successes and challenges

With alcohol consumption steadily declining, the growing popularity of dry january, a fiercely competitive environment, high dry matter inflation, economic upheavals, commercial uncertainties… The wine industry must adapt and offer products that meet consumer expectations, without denying their historical singularities.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Influence of organic plant treatment on the terroir of microorganisms

Several factors like vineyard site, climate, grape variety, ripeness, physical health of the grapes and pest management influence the populations of indigenous yeasts on grapes and later on in spontaneous fermentations.

OPTIMIZATION, VALIDATION AND APPLICATION OF THE EPR SPIN-TRAPPING TECHNIQUE TO THE DETECTION OF FREE RADICALS IN CHARDONNAY WINES

The aging potential of Burgundy chardonnay wines is considered as quality indicator. However, some of them exhibit higher oxidative sensitivity and premature oxidative aging symptoms, which are potentially induced by no-enzymatic oxidation such as Fenton-type reaction (Danilewicz, 2003). This chemical mechanism involves the action of transition metal, native phenolic compounds and oxygen which promote the generation of highly reactive oxygen species (ROS) such as hydroxyl radicals (OH) or 1-hydroxyethyl radicals (1-HER) from oxidation of ethanol. Such mechanism is involved in the radical oxidation occurring during bottle aging. According to Elias et al.,(2009a), the 1-HER is the most abundant radical in forced oxidation treated wines. Consequently, understanding its evolution kinetic in dry white wines is of great importance.