Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

Abstract

AIM: Study the chemical and sensory parameters of fifty commercial white wines elaborated with different techniques (fermented in oak barrel and aged on lees (FB+AL); aged on lees (AL); and without aging (WA)) and different grape varieties (Verdejo, Sauvignon blanc and Godello).

METHODS: Classical enological parameters (1), phenolic families (2), polysaccharides (3), volatile groups (4) and sensory attributes were analysed.

RESULTS: In general, the FB+AL wines had the highest content of the different phenolic families studied and the AL wines the lowest. In the FB+AL wines also highlighted the highest total polysaccharide content and acidity and WA ones the lowest. Respect to the volatile groups, the FB+AL wines showed the highest concentration of higher alcohols and those volatiles which come from the oak wood, such as whiskey lactones, vanillic and furanic derivatives, and positive volatile phenols. On the contrary, the AL and WA wines were characterized by their higher content of ethyl esters and alcohol acetates than FB+AL wines. Sensory differences were found between the wines elaborated with different techniques, The FB+AL wines showed the highest values of the olfactory intensity, followed by the WA and AL ones. This result was mainly due to the difference found in the white and tropical fruits and spice and toasted aromas. The FB+AL wines were better valuated in body and persistence attributes than the WA ones. Godello wines presented the highest ethanol content and Verdejo wines the lowest. Sauvignon blanc wines had the highest tartaric esters and flavonols, ethyl esters, ethyl esters, alcohol acetates and C6 alcohols, and the lowest total polysaccharides and aldehydes. Godello wines also had higher content of higher alcohols than Verdejo and Sauvignon blanc wines, and higher content of terpenes than Verdejo wines. Sauvignon blanc wines were characterized by having the highest vegetal aromas, Verdejo wines by tropical fruit aromas and Godello ones by white fruit aromas.

CONCLUSIONS

Differences in chemo-sensory parameters were found in the wines elaborated with different techniques. The FB+AL technique had more influence on these parameters due to the release of several compounds from oak and lees. The grape variety influence was different depending on the parameter analysed, highlighting the differences found in the aromatic attributes of each varietal wine.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marta Bueno-Herrera

Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain.,Rubén DEL BARRIO-GALÁN, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain.  Héctor DEL VALLE-HERRERO, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Pedro LÓPEZ DE LA CUESTA, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Silvia PÉREZ-MAGARIÑO, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain.

Contact the author

Keywords

white wines, grape varieties, winemaking techniques, volatiles, phenols, polysaccharides, sensory attributes

Citation

Related articles…

The impact of nutrition label formats on wine consumer preferences

Recent regulations concerning alcoholic beverages have prompted producers to revise their product labels to incorporate nutritional information. In this context, qr codes containing such information, known as e-labels, are now being employed on wine labels for the first time.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].

Wine chemical markers assess nitrogen levels in original grape juice

Nitrogen (N) nutrition of the vineyard plays a crucial role in the composition of must and wine, impacting fermentation, as well as the aroma and taste of the final product. N-deficient grape juice can result in increased astringency and bitterness, and a decrease in pleasant aromas in the wine.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).