Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

Abstract

AIM: Study the chemical and sensory parameters of fifty commercial white wines elaborated with different techniques (fermented in oak barrel and aged on lees (FB+AL); aged on lees (AL); and without aging (WA)) and different grape varieties (Verdejo, Sauvignon blanc and Godello).

METHODS: Classical enological parameters (1), phenolic families (2), polysaccharides (3), volatile groups (4) and sensory attributes were analysed.

RESULTS: In general, the FB+AL wines had the highest content of the different phenolic families studied and the AL wines the lowest. In the FB+AL wines also highlighted the highest total polysaccharide content and acidity and WA ones the lowest. Respect to the volatile groups, the FB+AL wines showed the highest concentration of higher alcohols and those volatiles which come from the oak wood, such as whiskey lactones, vanillic and furanic derivatives, and positive volatile phenols. On the contrary, the AL and WA wines were characterized by their higher content of ethyl esters and alcohol acetates than FB+AL wines. Sensory differences were found between the wines elaborated with different techniques, The FB+AL wines showed the highest values of the olfactory intensity, followed by the WA and AL ones. This result was mainly due to the difference found in the white and tropical fruits and spice and toasted aromas. The FB+AL wines were better valuated in body and persistence attributes than the WA ones. Godello wines presented the highest ethanol content and Verdejo wines the lowest. Sauvignon blanc wines had the highest tartaric esters and flavonols, ethyl esters, ethyl esters, alcohol acetates and C6 alcohols, and the lowest total polysaccharides and aldehydes. Godello wines also had higher content of higher alcohols than Verdejo and Sauvignon blanc wines, and higher content of terpenes than Verdejo wines. Sauvignon blanc wines were characterized by having the highest vegetal aromas, Verdejo wines by tropical fruit aromas and Godello ones by white fruit aromas.

CONCLUSIONS

Differences in chemo-sensory parameters were found in the wines elaborated with different techniques. The FB+AL technique had more influence on these parameters due to the release of several compounds from oak and lees. The grape variety influence was different depending on the parameter analysed, highlighting the differences found in the aromatic attributes of each varietal wine.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marta Bueno-Herrera

Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain.,Rubén DEL BARRIO-GALÁN, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain.  Héctor DEL VALLE-HERRERO, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Pedro LÓPEZ DE LA CUESTA, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Silvia PÉREZ-MAGARIÑO, Agrarian Technological Institute of Castilla and León, Ctra Burgos Km 119, 47071 Valladolid, Spain.

Contact the author

Keywords

white wines, grape varieties, winemaking techniques, volatiles, phenols, polysaccharides, sensory attributes

Citation

Related articles…

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Exploring the contributions of terroir factors on berry quality of cvs. Cabernet-Sauvignon and Merlot (Vitis vinifera L.) at the Eastern Foothills of the Helan Mountains region of China

Terroir leaves its mark on the accumulation of flavours in grape berries, triggering biochemical re-actions and ultimately shaping wine styles.

Climate change impacts on European grapevine yields through a dynamic crop modelling approach

Climate has a predominant role on growth and development of grapevines. Therefore, climate change represents an important challenge to the winemaking sector.

New antibacterial peptides produced by Saccharomyces cerevisiae responsible for the inhibition of malolactic fermentation

In winemaking, several antimicrobial peptides (AMPs) produced by different strains of Saccharomyces cerevisiae were found to be responsible for the inhibition of malolactic fermentation (MLF) carried out by some strains of Oenococcus oeni. However, only two AMPs produced by one of the yeast strains studied were totally identified and their mechanism of action was described. In an attempt to identify new AMPs, a 5-10 kDa peptidic fraction produced by an oenological strain of S. cerevisiae and previously shown to strongly inhibit MLF carried out by a strain of O. oeni was further purified.

Indicators of Sustainable Vineyard Soil Management: Metrics for Assessing Environmental Impacts

The vital role of soils in supporting life on our planet cannot be overstated. Soils provide numerous ecosystem services and functions, including biomass production, carbon sequestration, physical support, biological habitat, and genetic reserve, among others. Understanding the characteristics and sensitivity of soils in a specific terroir, along with effective soil management practices, is crucial for the sustainable management of natural resources.