Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

Abstract

AIM: Many research studies have analyzed the effect of polysaccharides in the aromatic composition of white wines. However, it has been limited to yeast polysaccharides and commercial mannoproteins [1,2]. The aim of this research was to study the use of grape polysaccharides as finning agents and analyze their effect on the volatile composition and aromatic profile of Viura wines.

METHODS: Different fractions of grape polysaccharides were tested: polysaccharides extracted from white must (WM), red must (RM), red wine (RW), white grape skins (WGS), red grape skins (RGS), and lees from white wine (WL). A fraction of rhamnogalacturonan type II of 80% purity (RGII80%), and rhamnogalacturonan type II of 55% purity (RGII55%) were also tested. The different fractions were added as fining agents in Viura wines at bottling. Results were compared with controls and with commercial mannoproteins used for finning. The volatile composition of wines was analyzed by gas chromatography with mass detector (GC-MS) [3]. The wines were analyzed by 20 expert tasters from the D.O.Ca Rioja with a structured numerical scale according to UNE-87-020-93 Standard (ISO 4121:1987). The Geometric Mean (GM%) of the olfactory descriptors was used to classify the descriptors according to the International Organization for Standardization ISO 11035.

RESULTS: The wines treated with the RGS fraction showed the highest content of acetates, related to fruit and floral aromas. The wines treated with WL presented the highest content of total acids. Ethyl esters and C6 alcohols were found in high concentrations in most of the wines. The wines treated with the RW fraction presented the lowest content of volatile families and reduced the perception of the herbaceous descriptor.

CONCLUSIONS

This research would allow to study the effect of different fractions of grape polysaccharides as fining agents on the volatile composition and the aromatic profile of Viura wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Canalejo Collado

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain ,Zenaida, GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Leticia, MARTÍNEZ-LAPUENTE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Belén, AYESTARÁN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Silvia, PÉREZ-MAGARIÑO, Instituto Tecnológico Agrario de Castilla y León, Ctra. Burgos 119, 47071 Valladolid, Spain Estela, CANO-MOZO, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain Thierry DOCO, UMR 1083 Sciences pour l’Oenologie, INRA, SupAgro, 2 place Viala, Montpellier, France

Contact the author

Keywords

grape polysaccharide extracts, volatiles, aromatic properties, finning

Citation

Related articles…

“Vinhos de mesa” et oenophilie : quand les caractéristiques organoleptiques des cépages américains empêchent l’intégration des consommateurs à l’univers de l’appréciation esthétique

Au Brésil, 80 % du vignoble national et 90 % du vignoble de l’État du Rio Grande do Sul (principale région productrice de vins dans le pays) sont plantés avec des cépages issus de vitis labrusca ou de cépages hybrides (DEBASTIANI, 2015). Une partie de cette production est utilisée pour la préparation de jus de raisin et de concentrés de moût ou de pulpe de raisin. Le restant est consacré à

Characterization of bunch compactness and identification of associated genes in a diverse collection of cultivars of Vitis vinifera L.

Compactness is a complex trait of V. vinifera L. and is defined ultimately by the portion of free space within the bunch which is not occupied by the berries. A high degree of compactness results in poor ventilation and consequently a higher susceptibility to fungal diseases, diminishing the quality of the fruit. The easiness to conceptualize the trait and its importance arguably contrasts with the difficulty to measure and quantify it. However, recent technical advancements have allowed to study this attribute more accurately over the last decade. Our main objective was to explore the underlying genetics determining bunch compactness by applying updated phenotyping methods in a collection of V. vinifera L. cultivars with a wide genetic diversity.

Shifting wine consumption trends (2019-2024): market dynamics, sustainability, and consumer preferences

This study examined the evolution of wine consumption trends from 2019 to 2024, analyzing market dynamics, sustainability preferences, and generational shifts in consumer behavior.

The plantation frame as a measure of adaptation to climate change

The mechanization of vineyard work originally led to a reduction in planting densities due to the lack of machinery adapted to the vineyard. The current availability of specific machinery makes it possible to establish higher planting densities. In this work, three planting densities (1.40×0.80 m, 1.80×1 m and 2.20×1.20 m, corresponding to 8928, 5555 and 3787 plants/ha respectively) were studied with four varieties autochthonous of Galicia (northwestern Spain): Albariño and Treixadura (white), Sousón and Mencía (red). The vines were trained in a vertical shoot positioning system using a single Royat cordon, and pruned to spurs with two buds each. Agronomic data (yield, pruning wood weight, Ravaz index) and oenological data in must were collected. The higher planting density (1.40×0.80 m) had no significant effect on grape yield per vine in white varieties, although production per hectare was much higher due to the greater number of plants. In red varieties, this planting density resulted in a significantly lower production per vine, compensated by the greater number of plants. In addition, it significantly reduced the Brix degree in the must of the Albariño, Treixadura and Sousón varieties, and increased the total acidity in the latter two and Mencía. It also caused an increase in extractable and total anthocyanins and IPT in red grapes. The effects of high planting density on grapes are of great interest for the adaptation of varieties in the context of climate change. In the future, it could be advisable to modify the limits imposed by the appellations of origin on the planting density of these varieties in order to obtain more balanced wines.

ACIDIC AND DEMALIC SACCHAROMYCES CEREVISIAE STRAINS FOR MANAGING PROBLEMS OF ACIDITY DURING THE ALCOHOLIC FERMENTATION

In a recent study several genes controlling the acidification properties of the wine yeast Saccharomyces cerevisiae have been identified by a QTL approach [1]. Many of these genes showed allelic variations that affect the metabolism of malic acid and the pH homeostasis during the alcoholic fermentation. Such alleles have been used for driving genetic selection of new S. cerevisiae starters that may conversely acidify or deacidify the wine by producing or consuming large amount of malic acid [2]. This particular feature drastically modulates the final pH of wine with difference of 0.5 units between the two groups.