Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

Effect of grape polysaccharides on the volatile composition and aromatic profile of Viura wines

Abstract

AIM: Many research studies have analyzed the effect of polysaccharides in the aromatic composition of white wines. However, it has been limited to yeast polysaccharides and commercial mannoproteins [1,2]. The aim of this research was to study the use of grape polysaccharides as finning agents and analyze their effect on the volatile composition and aromatic profile of Viura wines.

METHODS: Different fractions of grape polysaccharides were tested: polysaccharides extracted from white must (WM), red must (RM), red wine (RW), white grape skins (WGS), red grape skins (RGS), and lees from white wine (WL). A fraction of rhamnogalacturonan type II of 80% purity (RGII80%), and rhamnogalacturonan type II of 55% purity (RGII55%) were also tested. The different fractions were added as fining agents in Viura wines at bottling. Results were compared with controls and with commercial mannoproteins used for finning. The volatile composition of wines was analyzed by gas chromatography with mass detector (GC-MS) [3]. The wines were analyzed by 20 expert tasters from the D.O.Ca Rioja with a structured numerical scale according to UNE-87-020-93 Standard (ISO 4121:1987). The Geometric Mean (GM%) of the olfactory descriptors was used to classify the descriptors according to the International Organization for Standardization ISO 11035.

RESULTS: The wines treated with the RGS fraction showed the highest content of acetates, related to fruit and floral aromas. The wines treated with WL presented the highest content of total acids. Ethyl esters and C6 alcohols were found in high concentrations in most of the wines. The wines treated with the RW fraction presented the lowest content of volatile families and reduced the perception of the herbaceous descriptor.

CONCLUSIONS

This research would allow to study the effect of different fractions of grape polysaccharides as fining agents on the volatile composition and the aromatic profile of Viura wines.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Canalejo Collado

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain ,Zenaida, GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Leticia, MARTÍNEZ-LAPUENTE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Belén, AYESTARÁN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Silvia, PÉREZ-MAGARIÑO, Instituto Tecnológico Agrario de Castilla y León, Ctra. Burgos 119, 47071 Valladolid, Spain Estela, CANO-MOZO, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain Thierry DOCO, UMR 1083 Sciences pour l’Oenologie, INRA, SupAgro, 2 place Viala, Montpellier, France

Contact the author

Keywords

grape polysaccharide extracts, volatiles, aromatic properties, finning

Citation

Related articles…

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Cumulative effects of repeated drought stress on berry composition, and phenolic profile: Field experiment insights

Drought stress has a profound impact on grapevine productivity and significantly alters key quality-related traits of berries. Although research has been conducted on the effects of individual drought events, there is still a knowledge gap regarding the cumulative consequences of repeated exposure to water scarcity and the influence of the timing of stress imposition. To address this gap, a field experiment was conducted to investigate the impacts of repeated drought stress on yield, berry composition, and the phenolic profile of grape berries. The results indicate that yield is primarily influenced by pre-veraison water deficit. Although the number of clusters was only slightly reduced, a substantial decrease in berry size was observed, resulting in a notable reduction in overall yield.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Can the satellite image resolution be improved to support precision agriculture in the vineyard through vegetation indices?

Aim: This study aims to show the application of a new methodological approach to improve the resolution of Sentinel-2A images and derived vegetation indices through the results from different vineyards.