Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

Abstract

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS). Then, we decide to extract them from grape pomace and musts and incorporate them into wines to improve their quality, in a circular economy process.

METHODS: Four white wines from Verdejo and Albillo grape varieties were elaborated and five experiments were carried out with each wine: control wines (without the addition of any product); wines with the addition of PS extracted from white grape pomace (1); wines with the addition of PS extracted from white must (2); wines with the addition of rhamnogalacturonans type II (RG-II) of 80% purity; and wines with the addition of commercial PS (inactivated yeast). These products were maintained in contact with the wines for two months, and then they were filtered and bottled. Total polysaccharides, volatile and phenolic compounds were analysed after two months in bottle (2,3), and a sensory analysis was also carried out.

RESULTS: No significant differences were found in the total phenolic compounds by the effect of the addition of the different PS added. In general, the addition of the different PS extracts increased the total PS content, mainly in the wines treated with PS extracted from grape pomace and must. The differences observed in the volatile composition depended on the wine and the family group. The ethyl esters and alcohol acetates slightly increased in some of the wines treated with PS extracted from grape pomace and must, and decreased in wines treated with RG-II. The treatment with the PS extracts reduced the acidity excess of some of the wines studied and increased their mouth-feel and global valuation.

CONCLUSIONS

The use of grape PS extracted from grape pomace or must improve some wine characteristics, such as polysaccharide and volatile composition, and the acidity and mouth-feel attributes. However, these are preliminary results since these wines will be analysed after six months in bottle in order to know if these changes will maintain.

ACKNOWLEDGEMENTS

The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-01.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Estela Cano-Mozo

Agrarian Technological Institute of Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.,Silvia PÉREZ-MAGARIÑO, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Marta BUENO-HERRERA, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Thierry DOCO, UMR 1083 Sciences pour l’Oenologie, INRA, SupAgro, 2 place Viala, Montpellier, France Diego CANALEJO, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain. Belén AYESTARÁN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain. Zenaida GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

wines, grape polysaccharides, volatiles, phenols, sensory attributes

Citation

Related articles…

Proposition of a simplified approach of the viticultural landscape

Une approche très simple de la lecture des paysages est proposée sur la base de l’expérience acquise par l’observation de divers terroirs du monde.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.

Impact of water stress on the phenolic composition of cv. Merlot grapes, in a typical terroir of the La Mancha region (Spain)

The study was carried out in 2006 with Merlot grapes from vines grown using the trellis system, where four treatments were compared with different levels of water stress.

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.