Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

Abstract

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS). Then, we decide to extract them from grape pomace and musts and incorporate them into wines to improve their quality, in a circular economy process.

METHODS: Four white wines from Verdejo and Albillo grape varieties were elaborated and five experiments were carried out with each wine: control wines (without the addition of any product); wines with the addition of PS extracted from white grape pomace (1); wines with the addition of PS extracted from white must (2); wines with the addition of rhamnogalacturonans type II (RG-II) of 80% purity; and wines with the addition of commercial PS (inactivated yeast). These products were maintained in contact with the wines for two months, and then they were filtered and bottled. Total polysaccharides, volatile and phenolic compounds were analysed after two months in bottle (2,3), and a sensory analysis was also carried out.

RESULTS: No significant differences were found in the total phenolic compounds by the effect of the addition of the different PS added. In general, the addition of the different PS extracts increased the total PS content, mainly in the wines treated with PS extracted from grape pomace and must. The differences observed in the volatile composition depended on the wine and the family group. The ethyl esters and alcohol acetates slightly increased in some of the wines treated with PS extracted from grape pomace and must, and decreased in wines treated with RG-II. The treatment with the PS extracts reduced the acidity excess of some of the wines studied and increased their mouth-feel and global valuation.

CONCLUSIONS

The use of grape PS extracted from grape pomace or must improve some wine characteristics, such as polysaccharide and volatile composition, and the acidity and mouth-feel attributes. However, these are preliminary results since these wines will be analysed after six months in bottle in order to know if these changes will maintain.

ACKNOWLEDGEMENTS

The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-01.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Estela Cano-Mozo

Agrarian Technological Institute of Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.,Silvia PÉREZ-MAGARIÑO, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Marta BUENO-HERRERA, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Thierry DOCO, UMR 1083 Sciences pour l’Oenologie, INRA, SupAgro, 2 place Viala, Montpellier, France Diego CANALEJO, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain. Belén AYESTARÁN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain. Zenaida GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

wines, grape polysaccharides, volatiles, phenols, sensory attributes

Citation

Related articles…

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day).

La vinicultura en regiones tropicales Brasileras

La producción mundial de uvas para mesa es obtenida de viñedos localizados entre los paralelos 30 y 50º Latitud Norte y 30 y 40º Latitud Sur.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.