Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

Abstract

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS). Then, we decide to extract them from grape pomace and musts and incorporate them into wines to improve their quality, in a circular economy process.

METHODS: Four white wines from Verdejo and Albillo grape varieties were elaborated and five experiments were carried out with each wine: control wines (without the addition of any product); wines with the addition of PS extracted from white grape pomace (1); wines with the addition of PS extracted from white must (2); wines with the addition of rhamnogalacturonans type II (RG-II) of 80% purity; and wines with the addition of commercial PS (inactivated yeast). These products were maintained in contact with the wines for two months, and then they were filtered and bottled. Total polysaccharides, volatile and phenolic compounds were analysed after two months in bottle (2,3), and a sensory analysis was also carried out.

RESULTS: No significant differences were found in the total phenolic compounds by the effect of the addition of the different PS added. In general, the addition of the different PS extracts increased the total PS content, mainly in the wines treated with PS extracted from grape pomace and must. The differences observed in the volatile composition depended on the wine and the family group. The ethyl esters and alcohol acetates slightly increased in some of the wines treated with PS extracted from grape pomace and must, and decreased in wines treated with RG-II. The treatment with the PS extracts reduced the acidity excess of some of the wines studied and increased their mouth-feel and global valuation.

CONCLUSIONS

The use of grape PS extracted from grape pomace or must improve some wine characteristics, such as polysaccharide and volatile composition, and the acidity and mouth-feel attributes. However, these are preliminary results since these wines will be analysed after six months in bottle in order to know if these changes will maintain.

ACKNOWLEDGEMENTS

The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-01.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Estela Cano-Mozo

Agrarian Technological Institute of Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain.,Silvia PÉREZ-MAGARIÑO, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Marta BUENO-HERRERA, Instituto Tecnológico Agrario de Castilla y León, Ctra Burgos Km 119, 47071 Valladolid, Spain. Thierry DOCO, UMR 1083 Sciences pour l’Oenologie, INRA, SupAgro, 2 place Viala, Montpellier, France Diego CANALEJO, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain. Belén AYESTARÁN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain. Zenaida GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

wines, grape polysaccharides, volatiles, phenols, sensory attributes

Citation

Related articles…

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.

Italy sweet revolution: how club grapes are transforming the table grape market

Italy is the leader table grape producer country in Europe and the eighth worldwide (OIV, 2021). The italian production area is sized at approximately 47,248 hectares with a production of 9.66 million quintals of grapes. Apulia and sicily are the main producing italian regions which collectively account for over the 90% of the italian production area (istat, 2022).

CHARACTERIZATION AND ANTIBACTERIAL ACTIVITY OF A POLYPHENOLIC EXTRACT OBTAINED BY GREEN SUPERCRITICAL CO₂ EXTRACTION FROM RED GRAPE POMACE

Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.