Macrowine 2021
IVES 9 IVES Conference Series 9 Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Abstract

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited. Considering that NS strains are bioresources which could boost innovation in the wine sector, efficient production of powder formulations is of utmost importance to valorise bioresources outside the laboratory environment.

METHODS: Three strains with high oenological potential, selected in previous studies, namely Lachancea thermotolerans DBT027, Metschnikowia sp. DBT012 and Starmerella bacillaris DBT045 were grown in a sterilized medium mainly constituted by grape juice with yeast assimilable nitrogen integration. Early stationary growth phase cultures were collected and suspended in 1% yeast extract, for powder production. The three prototype batches were rehydrated in tap water, to mimic winery conditions, for 15 minutes at four temperatures (20, 25, 30 and 35 ºC). Survival rates of yeasts were assessed before and after rehydration, and after storage at -20 ºC. The same powder NS yeasts were also in multi-starter fermentations in winery and their persistence was monitored.

RESULTS: The selected NS yeast strains were able to grow in the production medium with similar yields, and the powder formulation retained elevated cell viability (around 109-1010 cells/g). The optimal rehydration temperature was different for the three strains: Metschnikowia sp. DBT012 and L. thermotolerans DBT027 maintained higher survival at 35 ºC, while S. bacillaris DBT045 at 20 ºC, as could be expected considering the phenotypic characteristics of the species. Technological performances of the tested powder formulations were satisfactory, especially for DBT012, which was able to grow in grape must after inoculation and dominated over the indigenous microbiota.

CONCLUSIONS

The applied protocol for producing NS yeasts in the powder formulation was successful, as they retained high viability during rehydration and suitable activity when inoculated in must. Powder formulation guaranteed the conservation of the same batch for several comparative tests, bringing out their positive contribution to innovative winemaking biotechnologies. The ability to withstand a larger scale process of biomass production is essential for the exploitation of suitable non-Saccharomyces yeasts selected among a collection of yeast strains with proven oenological potential at laboratory scale. ACKNOWLEDGMENTS: Research developed in the framework of POR FESR 2014-2020 Regione del Veneto, project VIT-VIVE

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanna Felis 

Department of Biotechnology, University of Verona, Italy,Renato Leal BINATI, Dept. Biotechnology, University of Verona, Italy Eleonora TROIANO, Dept. Biotechnology, University of Verona, Italy Sandra TORRIANI, Dept. Biotechnology, University of Verona, Italy Marta TEBALDI, Microbion S.r.L. Italy Alessandro RONCADOR, Microbion S.r.L. Italy Fabio FRACCHETTI, Microbion S.r.L. Italy

Contact the author

Keywords

starter cultures, biomass production, dehydration, active dry yeasts

Citation

Related articles…

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.

EFFECT OF DIFFERENT TEMPERATURE AND WATER-LOSS DEHYDRATION CONDITIONS ON THE PATTERN OF FREE AND GLYCOSYLATED VOLATILE METABOLITES OF ITALIAN RED GRAPES

Post-harvest grape berries dehydration/withering are worldwide applied to produce high-quality sweet and dry wines (e.i., Vin Santo, Tokaji, Amarone della Valpolicella). Temperature and water loss impact grape metabolism [1] and are key variables in modulating the production of grape compounds of oenological interest, such as Volatile Organic Compounds (VOCs), secondary metabolites responsible for the aroma of the final wine.
The aim of this research was to assess the impact of post-harvest dehydration on free and glycosylated VOCs of two Italian red wine grapes, namely Nebbiolo and Aleatico, dehydrated in tunnel under controlled condition (varied temperature and weight-loss, at constant humidity and air flow). From these grapes Sforzato di Valtellina Passito DOCG and Elba Aleatico Passito DOCG, respectively.

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

Nematode vectors, grape fanleaf virus (GFLV) incidence and free virus vine plants obtaining in “Condado de Huelva” vineyards zone

The « Condado de Huelva » Registered Appellation Origin Mark (RAOM) is located in the Province of Huelva, in the southwest of Andalucía (Spain), being limited by the Atlantic Ocean and the Province of Sevilla. « Zalema », a white high productive grapevine plant is its major cultivar. The predominant rootstocks used are « Rupestris du Lot », « Castel 196-17 », « Couderc 161-49 », Couderc 33-09 », « Richter 110 » and « Millardet 41-B ». Traditionally, « Zalema » cv. has been dedicated to the elaboration of amber, bouquet-flavoured wines and in the last years mainly to young, fruit-flavoured white table wines.

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.