Macrowine 2021
IVES 9 IVES Conference Series 9 Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Abstract

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited. Considering that NS strains are bioresources which could boost innovation in the wine sector, efficient production of powder formulations is of utmost importance to valorise bioresources outside the laboratory environment.

METHODS: Three strains with high oenological potential, selected in previous studies, namely Lachancea thermotolerans DBT027, Metschnikowia sp. DBT012 and Starmerella bacillaris DBT045 were grown in a sterilized medium mainly constituted by grape juice with yeast assimilable nitrogen integration. Early stationary growth phase cultures were collected and suspended in 1% yeast extract, for powder production. The three prototype batches were rehydrated in tap water, to mimic winery conditions, for 15 minutes at four temperatures (20, 25, 30 and 35 ºC). Survival rates of yeasts were assessed before and after rehydration, and after storage at -20 ºC. The same powder NS yeasts were also in multi-starter fermentations in winery and their persistence was monitored.

RESULTS: The selected NS yeast strains were able to grow in the production medium with similar yields, and the powder formulation retained elevated cell viability (around 109-1010 cells/g). The optimal rehydration temperature was different for the three strains: Metschnikowia sp. DBT012 and L. thermotolerans DBT027 maintained higher survival at 35 ºC, while S. bacillaris DBT045 at 20 ºC, as could be expected considering the phenotypic characteristics of the species. Technological performances of the tested powder formulations were satisfactory, especially for DBT012, which was able to grow in grape must after inoculation and dominated over the indigenous microbiota.

CONCLUSIONS

The applied protocol for producing NS yeasts in the powder formulation was successful, as they retained high viability during rehydration and suitable activity when inoculated in must. Powder formulation guaranteed the conservation of the same batch for several comparative tests, bringing out their positive contribution to innovative winemaking biotechnologies. The ability to withstand a larger scale process of biomass production is essential for the exploitation of suitable non-Saccharomyces yeasts selected among a collection of yeast strains with proven oenological potential at laboratory scale. ACKNOWLEDGMENTS: Research developed in the framework of POR FESR 2014-2020 Regione del Veneto, project VIT-VIVE

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanna Felis 

Department of Biotechnology, University of Verona, Italy,Renato Leal BINATI, Dept. Biotechnology, University of Verona, Italy Eleonora TROIANO, Dept. Biotechnology, University of Verona, Italy Sandra TORRIANI, Dept. Biotechnology, University of Verona, Italy Marta TEBALDI, Microbion S.r.L. Italy Alessandro RONCADOR, Microbion S.r.L. Italy Fabio FRACCHETTI, Microbion S.r.L. Italy

Contact the author

Keywords

starter cultures, biomass production, dehydration, active dry yeasts

Citation

Related articles…

Impact of winemaking practises on the formation of pinking

The pinking is a phenomenon that can occur in white wine produced with white grape causing the color change from yellow to red-salmon hue. Even if its appearance is highly variable and dependent to the vintage, the wines from certain grape varieties, such as Sauvignon blanc, Chardonnay, Riesling and Trebbiano di Lugana, have been identified to be more susceptible to the pinking.

The Gibberellic-Acid Insensitive gene Vvgai1 impacts both vegetative growth and organogenesis rate in Vitis labruscana

Context and purpose of the study. As other perennial crops grapevine is facing the challenges of climate changes. One of the major issues is global warming and variations of the water budget.

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties.