Macrowine 2021
IVES 9 IVES Conference Series 9 Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Abstract

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited. Considering that NS strains are bioresources which could boost innovation in the wine sector, efficient production of powder formulations is of utmost importance to valorise bioresources outside the laboratory environment.

METHODS: Three strains with high oenological potential, selected in previous studies, namely Lachancea thermotolerans DBT027, Metschnikowia sp. DBT012 and Starmerella bacillaris DBT045 were grown in a sterilized medium mainly constituted by grape juice with yeast assimilable nitrogen integration. Early stationary growth phase cultures were collected and suspended in 1% yeast extract, for powder production. The three prototype batches were rehydrated in tap water, to mimic winery conditions, for 15 minutes at four temperatures (20, 25, 30 and 35 ºC). Survival rates of yeasts were assessed before and after rehydration, and after storage at -20 ºC. The same powder NS yeasts were also in multi-starter fermentations in winery and their persistence was monitored.

RESULTS: The selected NS yeast strains were able to grow in the production medium with similar yields, and the powder formulation retained elevated cell viability (around 109-1010 cells/g). The optimal rehydration temperature was different for the three strains: Metschnikowia sp. DBT012 and L. thermotolerans DBT027 maintained higher survival at 35 ºC, while S. bacillaris DBT045 at 20 ºC, as could be expected considering the phenotypic characteristics of the species. Technological performances of the tested powder formulations were satisfactory, especially for DBT012, which was able to grow in grape must after inoculation and dominated over the indigenous microbiota.

CONCLUSIONS

The applied protocol for producing NS yeasts in the powder formulation was successful, as they retained high viability during rehydration and suitable activity when inoculated in must. Powder formulation guaranteed the conservation of the same batch for several comparative tests, bringing out their positive contribution to innovative winemaking biotechnologies. The ability to withstand a larger scale process of biomass production is essential for the exploitation of suitable non-Saccharomyces yeasts selected among a collection of yeast strains with proven oenological potential at laboratory scale. ACKNOWLEDGMENTS: Research developed in the framework of POR FESR 2014-2020 Regione del Veneto, project VIT-VIVE

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanna Felis 

Department of Biotechnology, University of Verona, Italy,Renato Leal BINATI, Dept. Biotechnology, University of Verona, Italy Eleonora TROIANO, Dept. Biotechnology, University of Verona, Italy Sandra TORRIANI, Dept. Biotechnology, University of Verona, Italy Marta TEBALDI, Microbion S.r.L. Italy Alessandro RONCADOR, Microbion S.r.L. Italy Fabio FRACCHETTI, Microbion S.r.L. Italy

Contact the author

Keywords

starter cultures, biomass production, dehydration, active dry yeasts

Citation

Related articles…

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Effect of irrigation regime on carbon isotope ratio (δ13c) in different grapevines

In Castilla-La Mancha as other winegrowing regions, vineyards suffer the effects of the global climate warming. Severe spring and summer droughts are increasingly frequent, which concur with the phenological stages most susceptible to water and temperature stress. Under these conditions, irrigation use is required in order to ensure the vineyard growing sustainability. However water resources are increasingly limited, for this reason is required to choose cultivars displaying high water use efficiency.

Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH