Macrowine 2021
IVES 9 IVES Conference Series 9 Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Exploring the resistance of non-Saccharomyces wine yeasts to dehydration-rehydration processes

Abstract

AIM: The use of non-Saccharomyces (NS) yeasts in multi-starter fermentations with S. cerevisiae is a trend in the wine industry, but the number of strains commercially available in a powder formulation, such as active dry yeasts (ADY), is still limited. Considering that NS strains are bioresources which could boost innovation in the wine sector, efficient production of powder formulations is of utmost importance to valorise bioresources outside the laboratory environment.

METHODS: Three strains with high oenological potential, selected in previous studies, namely Lachancea thermotolerans DBT027, Metschnikowia sp. DBT012 and Starmerella bacillaris DBT045 were grown in a sterilized medium mainly constituted by grape juice with yeast assimilable nitrogen integration. Early stationary growth phase cultures were collected and suspended in 1% yeast extract, for powder production. The three prototype batches were rehydrated in tap water, to mimic winery conditions, for 15 minutes at four temperatures (20, 25, 30 and 35 ºC). Survival rates of yeasts were assessed before and after rehydration, and after storage at -20 ºC. The same powder NS yeasts were also in multi-starter fermentations in winery and their persistence was monitored.

RESULTS: The selected NS yeast strains were able to grow in the production medium with similar yields, and the powder formulation retained elevated cell viability (around 109-1010 cells/g). The optimal rehydration temperature was different for the three strains: Metschnikowia sp. DBT012 and L. thermotolerans DBT027 maintained higher survival at 35 ºC, while S. bacillaris DBT045 at 20 ºC, as could be expected considering the phenotypic characteristics of the species. Technological performances of the tested powder formulations were satisfactory, especially for DBT012, which was able to grow in grape must after inoculation and dominated over the indigenous microbiota.

CONCLUSIONS

The applied protocol for producing NS yeasts in the powder formulation was successful, as they retained high viability during rehydration and suitable activity when inoculated in must. Powder formulation guaranteed the conservation of the same batch for several comparative tests, bringing out their positive contribution to innovative winemaking biotechnologies. The ability to withstand a larger scale process of biomass production is essential for the exploitation of suitable non-Saccharomyces yeasts selected among a collection of yeast strains with proven oenological potential at laboratory scale. ACKNOWLEDGMENTS: Research developed in the framework of POR FESR 2014-2020 Regione del Veneto, project VIT-VIVE

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanna Felis 

Department of Biotechnology, University of Verona, Italy,Renato Leal BINATI, Dept. Biotechnology, University of Verona, Italy Eleonora TROIANO, Dept. Biotechnology, University of Verona, Italy Sandra TORRIANI, Dept. Biotechnology, University of Verona, Italy Marta TEBALDI, Microbion S.r.L. Italy Alessandro RONCADOR, Microbion S.r.L. Italy Fabio FRACCHETTI, Microbion S.r.L. Italy

Contact the author

Keywords

starter cultures, biomass production, dehydration, active dry yeasts

Citation

Related articles…

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.