Macrowine 2021
IVES 9 IVES Conference Series 9 Management of varietal thiols in white and rosé wines using biotechnical tools

Management of varietal thiols in white and rosé wines using biotechnical tools

Abstract

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines. Significant differences in the extraction of 3- sulfanylhexan-1-ol (3-SH) precursors were observed in juices from Merlot grapes. The use of maceration enzymes led to an increase in both S-glutathionylated (GSH-3SH) and S-cysteinylated (Cys-3SH) precursors. The same trend of extraction was observed in Sauvignon blanc grapes, even if not statistically differentiated. In relation to 4-methyl-4-sulfanyl-pentan-2-one (4-MSP) precursors, the Cys-4MSP was the sole compound to be found, exclusively in Sauvignon blanc must. However, the enzyme treatment did not increase the concentration of this precursor. Grapes were pressed and racked after 24 hours of cold settling. For each variety, both musts were fermented in triplicate, in the presence and absence of a yeast autolysate. The nutrition management imparted significant differences between the volatile thiols in the final wines. The use of yeast autolysate increased the 3-SH content by ⁓25% and ⁓46%, in both Sauvignon blanc and Merlot wines, respectively. Moreover, the concentration of 4-MSP was four-fold higher in Sauvignon blanc wines supplemented with yeast nutrients. In Merlot wines 4-MSP was undetectable, result consistent with the absence of its precursors in the must of this variety.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Adelaide Gallo¹, Alice Barbero¹, Loris Tonidandel¹, Rémi Schneider², Roberto Larcher¹, Tomas Roman¹

¹ Fondazione Edmund Mach—Technology Transfer Center, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
² Oenobrands SAS, Parc Agropolis II – Bât 5, 2196 Bd de la Lironde, CS 34603, CEDEX 05, 34397
Montpellier, France

Contact the author

Keywords

3- sulfanylhexan-1-ol; 4-methyl-4-sulfanyl-pentan-2-on; thiol precursors; maceration; wine aroma; pectolytic enzymes; yeast nutrients

Citation

Related articles…

Analysis of peptide fraction from white wines

Among nitrogen compounds included in white wines, the peptide fraction is certainly the least studied, however this fraction is quantitatively the most important (Feuillat, 1974). Existing studies concern the fraction below 1 kDa and only for white and sparkling wines (Bartolomé et al, 1997, Desportes et al 2000). In this report, we have developed methods to isolate peptides from reference white wines. Then, we have applied this methodology with bitter wine to answer a research question: is there a relation between peptides and the bitterness of white wine as for some cheese for example (Furtado, 1984)?

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.