Macrowine 2021
IVES 9 IVES Conference Series 9 Management of varietal thiols in white and rosé wines using biotechnical tools

Management of varietal thiols in white and rosé wines using biotechnical tools

Abstract

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines. Significant differences in the extraction of 3- sulfanylhexan-1-ol (3-SH) precursors were observed in juices from Merlot grapes. The use of maceration enzymes led to an increase in both S-glutathionylated (GSH-3SH) and S-cysteinylated (Cys-3SH) precursors. The same trend of extraction was observed in Sauvignon blanc grapes, even if not statistically differentiated. In relation to 4-methyl-4-sulfanyl-pentan-2-one (4-MSP) precursors, the Cys-4MSP was the sole compound to be found, exclusively in Sauvignon blanc must. However, the enzyme treatment did not increase the concentration of this precursor. Grapes were pressed and racked after 24 hours of cold settling. For each variety, both musts were fermented in triplicate, in the presence and absence of a yeast autolysate. The nutrition management imparted significant differences between the volatile thiols in the final wines. The use of yeast autolysate increased the 3-SH content by ⁓25% and ⁓46%, in both Sauvignon blanc and Merlot wines, respectively. Moreover, the concentration of 4-MSP was four-fold higher in Sauvignon blanc wines supplemented with yeast nutrients. In Merlot wines 4-MSP was undetectable, result consistent with the absence of its precursors in the must of this variety.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Adelaide Gallo¹, Alice Barbero¹, Loris Tonidandel¹, Rémi Schneider², Roberto Larcher¹, Tomas Roman¹

¹ Fondazione Edmund Mach—Technology Transfer Center, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
² Oenobrands SAS, Parc Agropolis II – Bât 5, 2196 Bd de la Lironde, CS 34603, CEDEX 05, 34397
Montpellier, France

Contact the author

Keywords

3- sulfanylhexan-1-ol; 4-methyl-4-sulfanyl-pentan-2-on; thiol precursors; maceration; wine aroma; pectolytic enzymes; yeast nutrients

Citation

Related articles…

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Analysis of volatile composition of interaction between the pathogen E. necator and two grapevine varieties

Volatile organic compounds (VOCs) are emitted by nearly all plant organs of the plants, including leaves. They play a key role in the communication with other organisms, therefore they are involved in plant defence against phytopathogens. In this study VOCs from grapevine leaves of two varieties of Vitis vinifera infected by Erysiphe necator were analysed. The varieties were selected based on their susceptibility to pathogen, Kishmish Vatkana has the Ren1 resistance gene and Zamarrica showed high susceptibility in previous trials.

Haplotype-Resolved genome assembly of the Microvine

Developing a tractable genetic engineering and gene editing system is an essential tool for grapevine. We initiated a plant transformation and biotechnology program at Oregon State University using the grape microvine system (V. vinifera) in 2018 to interrogate gene-to-trait relationships using traditional genetic engineering and gene editing. The microvine model is also used for nanomaterial-assisted RNP, DNA, and RNA delivery. Most reference genomes and annotations for grapevine are collapsed assemblies of homologous chromosomes and do not represent the specific microvine cultivar ‘043023V004’ under study at our institution.

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Mycotoxin accumulation and the possibilities of biological control of wine production quality

Against the background of climate change and the increasing impact of phytopathogenic agents of mycotic origin on the vine favors the appearance and toxicity of mycotoxins in wine.