Macrowine 2021
IVES 9 IVES Conference Series 9 Management of varietal thiols in white and rosé wines using biotechnical tools

Management of varietal thiols in white and rosé wines using biotechnical tools

Abstract

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines. Significant differences in the extraction of 3- sulfanylhexan-1-ol (3-SH) precursors were observed in juices from Merlot grapes. The use of maceration enzymes led to an increase in both S-glutathionylated (GSH-3SH) and S-cysteinylated (Cys-3SH) precursors. The same trend of extraction was observed in Sauvignon blanc grapes, even if not statistically differentiated. In relation to 4-methyl-4-sulfanyl-pentan-2-one (4-MSP) precursors, the Cys-4MSP was the sole compound to be found, exclusively in Sauvignon blanc must. However, the enzyme treatment did not increase the concentration of this precursor. Grapes were pressed and racked after 24 hours of cold settling. For each variety, both musts were fermented in triplicate, in the presence and absence of a yeast autolysate. The nutrition management imparted significant differences between the volatile thiols in the final wines. The use of yeast autolysate increased the 3-SH content by ⁓25% and ⁓46%, in both Sauvignon blanc and Merlot wines, respectively. Moreover, the concentration of 4-MSP was four-fold higher in Sauvignon blanc wines supplemented with yeast nutrients. In Merlot wines 4-MSP was undetectable, result consistent with the absence of its precursors in the must of this variety.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Adelaide Gallo¹, Alice Barbero¹, Loris Tonidandel¹, Rémi Schneider², Roberto Larcher¹, Tomas Roman¹

¹ Fondazione Edmund Mach—Technology Transfer Center, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
² Oenobrands SAS, Parc Agropolis II – Bât 5, 2196 Bd de la Lironde, CS 34603, CEDEX 05, 34397
Montpellier, France

Contact the author

Keywords

3- sulfanylhexan-1-ol; 4-methyl-4-sulfanyl-pentan-2-on; thiol precursors; maceration; wine aroma; pectolytic enzymes; yeast nutrients

Citation

Related articles…

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

A comprehensive and accurate annotation for the grapevine T2T genome 

Addressing the opportunities and challenges of genomics methods in grapevine (Vitis vinifera L.) requires the development of a comprehensive and accurate reference genome and annotation. We aimed to create a new gene annotation for the PN40024 grapevine reference genome by integrating the highly accurate and complete T2T assembly and the manually curated PN40024.v4 annotation. Here, we present a novel workflow to enhance the annotation of the T2T genome by incorporating past community input found in PN40024.v4. The pipeline’s containerization will improve the workflow’s reproducibility and flexibility, facilitating its inclusion as a shared workflow on the Grapedia portal, the grapevine genomics encyclopedia.

Heat waves and drought stress impact grapevine growth and physiology

Recurring heat and drought episodes during the growing season can produce adverse impacts on grape production in many wine regions around the world.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.