Macrowine 2021
IVES 9 IVES Conference Series 9 Management of varietal thiols in white and rosé wines using biotechnical tools

Management of varietal thiols in white and rosé wines using biotechnical tools

Abstract

The present study evaluates the effect of prefermentative maceration enzymes and yeast autolysate on the concentration of conjugated precursors and volatile thiols, respectively.Sauvignon blanc and Merlot grapes underwent skin-contact maceration with or without pectolytic enzymes, for the production of white and rosé wines. Significant differences in the extraction of 3- sulfanylhexan-1-ol (3-SH) precursors were observed in juices from Merlot grapes. The use of maceration enzymes led to an increase in both S-glutathionylated (GSH-3SH) and S-cysteinylated (Cys-3SH) precursors. The same trend of extraction was observed in Sauvignon blanc grapes, even if not statistically differentiated. In relation to 4-methyl-4-sulfanyl-pentan-2-one (4-MSP) precursors, the Cys-4MSP was the sole compound to be found, exclusively in Sauvignon blanc must. However, the enzyme treatment did not increase the concentration of this precursor. Grapes were pressed and racked after 24 hours of cold settling. For each variety, both musts were fermented in triplicate, in the presence and absence of a yeast autolysate. The nutrition management imparted significant differences between the volatile thiols in the final wines. The use of yeast autolysate increased the 3-SH content by ⁓25% and ⁓46%, in both Sauvignon blanc and Merlot wines, respectively. Moreover, the concentration of 4-MSP was four-fold higher in Sauvignon blanc wines supplemented with yeast nutrients. In Merlot wines 4-MSP was undetectable, result consistent with the absence of its precursors in the must of this variety.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Adelaide Gallo¹, Alice Barbero¹, Loris Tonidandel¹, Rémi Schneider², Roberto Larcher¹, Tomas Roman¹

¹ Fondazione Edmund Mach—Technology Transfer Center, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
² Oenobrands SAS, Parc Agropolis II – Bât 5, 2196 Bd de la Lironde, CS 34603, CEDEX 05, 34397
Montpellier, France

Contact the author

Keywords

3- sulfanylhexan-1-ol; 4-methyl-4-sulfanyl-pentan-2-on; thiol precursors; maceration; wine aroma; pectolytic enzymes; yeast nutrients

Citation

Related articles…

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

Podcasts – Terroir Congress 2020

All about “Australian grapevine stories”

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.