Macrowine 2021
IVES 9 IVES Conference Series 9 The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

Abstract

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values. Four red wines from Aragonez grapes and six white wines from Antão Vaz grapes were produced using two different strategies for musts acidity correction: i) the addition of a mixture of organic acids (Mix) commonly used in winemaking; ii) the addition of previously produced unripe grape musts (UM) from the same grape varieties. Also, a testimonial (T) sample was produced in both wine varieties with no acidity correction. Oenological parameters, amino acid (AA) content and volatile composition of all wines produced were determined and evaluated.

The AAs composition was quantified by HPLC-DAD, after a derivatization step to obtain the aminoenone derivatives [1,2]. The volatile organic compounds (VOCs) were determined by GC/MS, after an HS-SPME extraction [3]. One-way analysis of variance with Fisher’s least significant difference (LSD) test at p<0.05 and Principal Component Analysis (PCA) were performed with SPSS24.0.

The Aragonez wines showed significant differences between the wines with acidity correction by the unripe musts addition (UM-A and UM-B), showing the higher amounts of AAs (640.08 mg/L and 630.33 mg/L, respectively), and the wines from Mix and T, with lowest amounts of AAs (546.24 mg/L and 562.51 mg/L, respectively). Also, for the volatile compounds significant differences were found for the UM-B wine, with the highest amount of VOCs, and T wine, with the lowest amount of VOCs. As for the Antão Vaz wines, significant differences were obtained between all wines, regarding AA content, with T wine showing the higher amounts of AA (4395.13 mg/L), and Mix wine the lowest content. (2948.41 mg/L). On the volatile results no significant differences were obtained among them.

Principal component analysis (PCA) obtained with combined data of AAs and volatile compounds, after normalization, for all wine samples, shows the separation obtained for the Aragonez red wines and Antão Vaz white wines according to the type of acidification under study… Results obtained indicate that the use of unripe grape musts can be a strategy to increase musts acidity, without a negative impact on wine characteristics.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Catarina Pereira

MED – Mediterranean Institute for Agriculture, Environment and Development. Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.,Davide, MENDES – LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. Nuno, MARTINS – MED – Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal. Raquel, GARCIA – MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal. Marco, GOMES DA SILVA, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. Maria João, CABRITA – MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal.

Contact the author

Keywords

acidity correction; unripe grape musts; circular economy; aragonez grapes; antão vaz grapes; amino acids; volatile compounds

Citation

Related articles…

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

Discrimination of white wines by Raman spectroscopy coupled with chemometric methods

France is the largest exporter of wine in the world. The export turnover is estimated at 8.7 billion euros in 2017 for 13 million hectoliters sold. This lucrative business pushes scammers to increase the value of some low-end wines by cheating on their appellations, quality or even their origins. These facts lead to losing 1.3 billion euros each year to the European Union’s wine and spirits companies.

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.