Macrowine 2021
IVES 9 IVES Conference Series 9 The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

The use of unripe frozen musts for modulating wine characteristics throughout acidity correction – effects on volatile and amino acid composition

Abstract

As environmental issues come more to the fore, vineyards residues are being looked at as solutions rather than problems. Aiming to develop a sustainable methodology for musts acidity correction in the process of winemaking, much needed in warm regions, the present study was performed according to Circular Economy values. Four red wines from Aragonez grapes and six white wines from Antão Vaz grapes were produced using two different strategies for musts acidity correction: i) the addition of a mixture of organic acids (Mix) commonly used in winemaking; ii) the addition of previously produced unripe grape musts (UM) from the same grape varieties. Also, a testimonial (T) sample was produced in both wine varieties with no acidity correction. Oenological parameters, amino acid (AA) content and volatile composition of all wines produced were determined and evaluated.

The AAs composition was quantified by HPLC-DAD, after a derivatization step to obtain the aminoenone derivatives [1,2]. The volatile organic compounds (VOCs) were determined by GC/MS, after an HS-SPME extraction [3]. One-way analysis of variance with Fisher’s least significant difference (LSD) test at p<0.05 and Principal Component Analysis (PCA) were performed with SPSS24.0.

The Aragonez wines showed significant differences between the wines with acidity correction by the unripe musts addition (UM-A and UM-B), showing the higher amounts of AAs (640.08 mg/L and 630.33 mg/L, respectively), and the wines from Mix and T, with lowest amounts of AAs (546.24 mg/L and 562.51 mg/L, respectively). Also, for the volatile compounds significant differences were found for the UM-B wine, with the highest amount of VOCs, and T wine, with the lowest amount of VOCs. As for the Antão Vaz wines, significant differences were obtained between all wines, regarding AA content, with T wine showing the higher amounts of AA (4395.13 mg/L), and Mix wine the lowest content. (2948.41 mg/L). On the volatile results no significant differences were obtained among them.

Principal component analysis (PCA) obtained with combined data of AAs and volatile compounds, after normalization, for all wine samples, shows the separation obtained for the Aragonez red wines and Antão Vaz white wines according to the type of acidification under study… Results obtained indicate that the use of unripe grape musts can be a strategy to increase musts acidity, without a negative impact on wine characteristics.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Catarina Pereira

MED – Mediterranean Institute for Agriculture, Environment and Development. Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.,Davide, MENDES – LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. Nuno, MARTINS – MED – Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal. Raquel, GARCIA – MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal. Marco, GOMES DA SILVA, LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. Maria João, CABRITA – MED – Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal.

Contact the author

Keywords

acidity correction; unripe grape musts; circular economy; aragonez grapes; antão vaz grapes; amino acids; volatile compounds

Citation

Related articles…

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out.

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Lamp – a modern tool for the detection of fungal infections in the vineyard

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.

Chitosan from sustainable source: antimicrobial activity against undesirable yeasts for production of low-sulphite wine

The addition of sulphur dioxide (SO2) is the method traditionally used for wine stabilisation, due to its broad spectrum of action against unwanted microorganisms and its ability to prevent oxidative phenomena.