Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Abstract

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon. This comparative approach was chosen to assess the importance of the term “phenolic maturity” and its impact on polyphenols and sensory characteristics in the context of well-known effects observed during winemaking. Pinot noir and Cabernet-Sauvignon were used due to the huge differences in the climatic growing conditions, in phenolic profiles in grapes and wines and their high international relevance.

METHODS: Pinot noir and Cabernet-Sauvignon grapes of the vintage 2018 were harvested at three different stages of ripening. The grapes were macerated for 6 days or 13 days. Wines were analyzed immediately after pressing and three months after bottling to investigate the influence of wine maturation. Vinification was conducted in 100 L fermenters. All wines were fermented < 1g/L residual sugar and MLF was done after alcoholic fermentation. The phenolic composition was analyzed using HPLC-DAD/FD, LC-QToF-MS and different spectrophotometric assays. The descriptive sensory analysis has been conducted using 19 trained judges.

RESULTS: The sensory analysis showed a higher variance between the wines due to berry maturity than due to maceration time. The sensory perception of wines made out of berries at different stages of ripening could not be influenced towards another stage by extending maceration time. Wine maturation was responsible for the highest variance in phenolic composition. Berry maturity had the lowest impact of the three factors. These observations were made for both grape varieties.

CONCLUSIONS: 

The analytical methods are well suited to identify and explain the differences of the wines due to maceration time and wine maturation. The strong influence of berry maturity on sensory perception cannot be explained solely by the phenolic composition of the wines. Further research is needed to identify other parameters that contribute to berry maturity and their interactions with polyphenols to improve the understanding of the term “phenolic maturity”. This study shows that the oenological tool of extended maceration cannot compensate insufficient berry maturity in regard to sensory perception.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Feifel

Weincampus Neustadt (Germany),Dominik DURNER, Weincampus Neustadt (Germany) Pascal WEGMANN-HERR, Weincampus Neustadt (Germany)

Contact the author

Keywords

phenolic maturity, berry maturity, extended maceration, pinot noir, Cabernet-Sauvignon

Citation

Related articles…

Phenolic composition and physicochemical analysis of wines made with the Syrah grape under double pruning in the Brazilian high-altitude Cerrado

This study explores the growing potential of vitiviniculture in Brazil’s Federal District, an emerging wine region marked by unique climatic conditions and innovative cultivation techniques.

VitExpress, an open interactive transcriptomic platform for grapevine

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2].

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes.