Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Abstract

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon. This comparative approach was chosen to assess the importance of the term “phenolic maturity” and its impact on polyphenols and sensory characteristics in the context of well-known effects observed during winemaking. Pinot noir and Cabernet-Sauvignon were used due to the huge differences in the climatic growing conditions, in phenolic profiles in grapes and wines and their high international relevance.

METHODS: Pinot noir and Cabernet-Sauvignon grapes of the vintage 2018 were harvested at three different stages of ripening. The grapes were macerated for 6 days or 13 days. Wines were analyzed immediately after pressing and three months after bottling to investigate the influence of wine maturation. Vinification was conducted in 100 L fermenters. All wines were fermented < 1g/L residual sugar and MLF was done after alcoholic fermentation. The phenolic composition was analyzed using HPLC-DAD/FD, LC-QToF-MS and different spectrophotometric assays. The descriptive sensory analysis has been conducted using 19 trained judges.

RESULTS: The sensory analysis showed a higher variance between the wines due to berry maturity than due to maceration time. The sensory perception of wines made out of berries at different stages of ripening could not be influenced towards another stage by extending maceration time. Wine maturation was responsible for the highest variance in phenolic composition. Berry maturity had the lowest impact of the three factors. These observations were made for both grape varieties.

CONCLUSIONS: 

The analytical methods are well suited to identify and explain the differences of the wines due to maceration time and wine maturation. The strong influence of berry maturity on sensory perception cannot be explained solely by the phenolic composition of the wines. Further research is needed to identify other parameters that contribute to berry maturity and their interactions with polyphenols to improve the understanding of the term “phenolic maturity”. This study shows that the oenological tool of extended maceration cannot compensate insufficient berry maturity in regard to sensory perception.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Feifel

Weincampus Neustadt (Germany),Dominik DURNER, Weincampus Neustadt (Germany) Pascal WEGMANN-HERR, Weincampus Neustadt (Germany)

Contact the author

Keywords

phenolic maturity, berry maturity, extended maceration, pinot noir, Cabernet-Sauvignon

Citation

Related articles…

Spectral characterisation of fungal diseases on Vitis vinifera leaves

Aims: The aims of this study were to (1) detect alterations in the reflectance spectra of vines with fungal diseases, (2) map these alterations, and (3) determine the best wavelengths which may be used as early indicators of fungal diseases in vines.

IDENTIFICATION OF NEW RESVERATROL DERIVATIVES FORMED IN RED WINE AND THEIR BIOLOGICAL PROPERTIES

Stilbenes are natural bioactive polyphenols produced by grapevine. Recently, we have reviewed the na- tural presence of these compounds in wines [1]. This study showed that the resveratrol and its glycoside, the piceid, are the most abundant stilbenes in wines. Resveratrol is a well-known stilbene with a wide range of biological activities. Due to its specific structure, resveratrol can be oxidized in wines to form various derivatives including oligomers [2]. In this study, we investigate the resveratrol and piceid transformation in wines.

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.