Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Abstract

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon. This comparative approach was chosen to assess the importance of the term “phenolic maturity” and its impact on polyphenols and sensory characteristics in the context of well-known effects observed during winemaking. Pinot noir and Cabernet-Sauvignon were used due to the huge differences in the climatic growing conditions, in phenolic profiles in grapes and wines and their high international relevance.

METHODS: Pinot noir and Cabernet-Sauvignon grapes of the vintage 2018 were harvested at three different stages of ripening. The grapes were macerated for 6 days or 13 days. Wines were analyzed immediately after pressing and three months after bottling to investigate the influence of wine maturation. Vinification was conducted in 100 L fermenters. All wines were fermented < 1g/L residual sugar and MLF was done after alcoholic fermentation. The phenolic composition was analyzed using HPLC-DAD/FD, LC-QToF-MS and different spectrophotometric assays. The descriptive sensory analysis has been conducted using 19 trained judges.

RESULTS: The sensory analysis showed a higher variance between the wines due to berry maturity than due to maceration time. The sensory perception of wines made out of berries at different stages of ripening could not be influenced towards another stage by extending maceration time. Wine maturation was responsible for the highest variance in phenolic composition. Berry maturity had the lowest impact of the three factors. These observations were made for both grape varieties.

CONCLUSIONS: 

The analytical methods are well suited to identify and explain the differences of the wines due to maceration time and wine maturation. The strong influence of berry maturity on sensory perception cannot be explained solely by the phenolic composition of the wines. Further research is needed to identify other parameters that contribute to berry maturity and their interactions with polyphenols to improve the understanding of the term “phenolic maturity”. This study shows that the oenological tool of extended maceration cannot compensate insufficient berry maturity in regard to sensory perception.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Feifel

Weincampus Neustadt (Germany),Dominik DURNER, Weincampus Neustadt (Germany) Pascal WEGMANN-HERR, Weincampus Neustadt (Germany)

Contact the author

Keywords

phenolic maturity, berry maturity, extended maceration, pinot noir, Cabernet-Sauvignon

Citation

Related articles…

Towards the definition of a detailed transcriptomic map of grape berry development

In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data

Exploiting somaclonal variability to increase drought stress tolerance in grapevine 

Global warming has enhanced the frequency and severity of drought events, hence calling for a better management of water resources in the vineyard and for an improvement of breeding platforms. Somatic embryogenesis (SE) (i.e. the initiation of embryos from somatic tissues) can spontaneously generate new genetic variability, which results from genetic mutations, changes in epigenetic marks, or phenotypic alterations.
This study was tailored to test whether vines in vitro regenerated through SE (i.e. somaclones), can tolerate water deprivation better than the mother plant.

Detection of spider mite using artificial intelligence in digital viticulture

Aim: Pests have a high impact on yield and grape quality in viticulture. An objective and rapid detection of pests under field conditions is needed. New sensing technologies and artificial intelligence could be used for pests detection in digital viticulture. The aim of this work was to apply computer vision and deep learning techniques for automatic detection of spider mite symptoms in grapevine under field conditions. 

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.