Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Influence of berry maturity, maceration time and wine maturation on the polyphenols and sensory characteristics of pinot noir and Cabernet-Sauvignon

Abstract

AIM: Combined investigation of the influence of berry maturity, maceration time and wine maturation on the changes in polyphenols and sensory characteristics of Pinot noir and Cabernet-Sauvignon. This comparative approach was chosen to assess the importance of the term “phenolic maturity” and its impact on polyphenols and sensory characteristics in the context of well-known effects observed during winemaking. Pinot noir and Cabernet-Sauvignon were used due to the huge differences in the climatic growing conditions, in phenolic profiles in grapes and wines and their high international relevance.

METHODS: Pinot noir and Cabernet-Sauvignon grapes of the vintage 2018 were harvested at three different stages of ripening. The grapes were macerated for 6 days or 13 days. Wines were analyzed immediately after pressing and three months after bottling to investigate the influence of wine maturation. Vinification was conducted in 100 L fermenters. All wines were fermented < 1g/L residual sugar and MLF was done after alcoholic fermentation. The phenolic composition was analyzed using HPLC-DAD/FD, LC-QToF-MS and different spectrophotometric assays. The descriptive sensory analysis has been conducted using 19 trained judges.

RESULTS: The sensory analysis showed a higher variance between the wines due to berry maturity than due to maceration time. The sensory perception of wines made out of berries at different stages of ripening could not be influenced towards another stage by extending maceration time. Wine maturation was responsible for the highest variance in phenolic composition. Berry maturity had the lowest impact of the three factors. These observations were made for both grape varieties.

CONCLUSIONS: 

The analytical methods are well suited to identify and explain the differences of the wines due to maceration time and wine maturation. The strong influence of berry maturity on sensory perception cannot be explained solely by the phenolic composition of the wines. Further research is needed to identify other parameters that contribute to berry maturity and their interactions with polyphenols to improve the understanding of the term “phenolic maturity”. This study shows that the oenological tool of extended maceration cannot compensate insufficient berry maturity in regard to sensory perception.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Sandra Feifel

Weincampus Neustadt (Germany),Dominik DURNER, Weincampus Neustadt (Germany) Pascal WEGMANN-HERR, Weincampus Neustadt (Germany)

Contact the author

Keywords

phenolic maturity, berry maturity, extended maceration, pinot noir, Cabernet-Sauvignon

Citation

Related articles…

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

Aroma chemical markers of Durello wines from different vintages and origins: a case study

Wines expressing sensory characters that are representative of their varietal and geographical origins are highly sought after in today’s market. It is therefore of considerable technological interest to investigate the aromatic aspects of specific wines and to identify the odorous substances involved. This study investigated aroma chemical and sensory diversity of Durello DOC white

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.