Macrowine 2021
IVES 9 IVES Conference Series 9 Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Abstract

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase. In this research, we propose a quick way to access the aromatic potential of grape varieties through a scan of their volatilome by SIFT-MS and chemometrics approaches. During 3 sampling campaigns carried out in September 2020, we collected berries from 21 grapes varieties planted in a germplasm collection. For each variety, three replicate samples of 50g were gently crushed and put in 1L Schott bottles that were directly connected to a SIFT-MS equipment to analyse the headspace. Analytes injected in the SIFT-MS were ionized with 3 different reagent ions (H3O+, O2+. and NO+) to generate increased molecular fragmentation data (2). M/z data/ratios were first analysed with XlStats software (Addinsoft, Paris, France) using a one-way ANOVA treatment to determine the ions that enabled to discriminate the grape varieties. Then based on these discriminating ions, Principal Component Analysis (PCAs) were constructed and Hierarchical Clustering Analysis (HCA) ensued to create similarity groups. Finally, an ANOVA treatment was conducted to determine significant differencies in ions abondances between groups (1). For each homogenous group, a cultivar was selected to perform Headspace-Solid Phase Microextraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS) analyzes to connect SIFT-MS data to the composition in volatile compounds (3). Grape varieties were easily distinguishable based only on their SIFT-MS volatilome scan. The technique was able to distinguish high and low aroma compounds producers, and to organise grape varieties by similarity. We proved that SIFT-MS is a really quick and interesting tool with potential application in various fieds of viticulture such as phenotyping of grape varieties based on their volatile composition or studying of the impact of viticultural practices on the grape aroma composition using an easy to implement untargeted approach.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Thomas Baerenzung Dit Baron

PPGV, INP-PURPAN, University of Toulouse. ,Alban JACQUES, PPGV, INP-PURPAN, University of Toulouse Olivier GEFFROY, PPGV, INP-PURPAN, University of Toulouse Valérie SIMON, LCA, INP-ENSIACET, University of Toulouse Olivier YOBRÉGAT, IFV Sud-Ouest

Contact the author

Keywords

sift-ms, grapevine, volatilome, chemometrics, phenotyping

Citation

Related articles…

Partitioning of seasonal above‐ground biomass of four vineyard-grown varieties: development of a modelling framework to infer temperature-rate response functions

Aims: Forecasting the biomass allocation among source and sinks organs is crucial to better understand how grapevines control the distribution of acquired resources and has a great meaning in term of making decisions about agricultural practices in vineyards. Modelling plant growth and development is one of prediction approaches that play this role when it concerns growth rates in response to variation in environmental conditions

Discovering the process of noble rot: fungal ecology of grape berries during the noble rot transformation in different vineyards of the Tokaj wine region

Botrytis cinerea, a well-known grapevine pathogen, has more than 1200 host plants causing grey rot in grapevine berries. However, it can also result in a desirable phenomenon called noble rot under specific microclimate conditions. An extraordinary demonstration of this natural process can be observed in the creation of aszú wines within Hungary’s Tokaj wine region. Beside B. cinerea other fungi and yeasts are involved in the secondary metabolic development of the grape berry which contributes to the sensory and analytical characterization of noble rot wines.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,