Macrowine 2021
IVES 9 IVES Conference Series 9 Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Abstract

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase. In this research, we propose a quick way to access the aromatic potential of grape varieties through a scan of their volatilome by SIFT-MS and chemometrics approaches. During 3 sampling campaigns carried out in September 2020, we collected berries from 21 grapes varieties planted in a germplasm collection. For each variety, three replicate samples of 50g were gently crushed and put in 1L Schott bottles that were directly connected to a SIFT-MS equipment to analyse the headspace. Analytes injected in the SIFT-MS were ionized with 3 different reagent ions (H3O+, O2+. and NO+) to generate increased molecular fragmentation data (2). M/z data/ratios were first analysed with XlStats software (Addinsoft, Paris, France) using a one-way ANOVA treatment to determine the ions that enabled to discriminate the grape varieties. Then based on these discriminating ions, Principal Component Analysis (PCAs) were constructed and Hierarchical Clustering Analysis (HCA) ensued to create similarity groups. Finally, an ANOVA treatment was conducted to determine significant differencies in ions abondances between groups (1). For each homogenous group, a cultivar was selected to perform Headspace-Solid Phase Microextraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS) analyzes to connect SIFT-MS data to the composition in volatile compounds (3). Grape varieties were easily distinguishable based only on their SIFT-MS volatilome scan. The technique was able to distinguish high and low aroma compounds producers, and to organise grape varieties by similarity. We proved that SIFT-MS is a really quick and interesting tool with potential application in various fieds of viticulture such as phenotyping of grape varieties based on their volatile composition or studying of the impact of viticultural practices on the grape aroma composition using an easy to implement untargeted approach.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Thomas Baerenzung Dit Baron

PPGV, INP-PURPAN, University of Toulouse. ,Alban JACQUES, PPGV, INP-PURPAN, University of Toulouse Olivier GEFFROY, PPGV, INP-PURPAN, University of Toulouse Valérie SIMON, LCA, INP-ENSIACET, University of Toulouse Olivier YOBRÉGAT, IFV Sud-Ouest

Contact the author

Keywords

sift-ms, grapevine, volatilome, chemometrics, phenotyping

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations

Biodiversity in the vineyard agroecosystem: exploring systemic approaches

Biodiversity conservation and restoration are essential for guarantee the provision of ecosystem services associated to vineyard agroecosystem such as climate regulation trough carbon sequestration and control of pests and diseases. Most of published research dealing with the complexity of the vineyard agroecosystems emphasizes the necessity of innovative approaches, including the integration of information at different temporal and spatial scales and development of systemic analysis based on modelling. A biodiversity survey was conducted in the Franciacorta wine-growing area (Lombardy, Italy), one of the most important Italian wine-growing regions for sparkling wine production, considering a portion of the territory of 112 ha. The area was divided into several Environmental Units (EUs), defined as a whole vineyard or portion of vineyard homogenous in terms of four agronomic characteristics: planting year, planting density, cultivar, and training system. In each EU a set of compartments was identified and characterised by specific variables. The compartments are meteorology, morphology (altitude, slope, aspect, row orientation, and solar irradiance), ecological infrastructures and management. The landscape surrounding EU was also characterised in terms of land-use in a buffer zone of 500 m. For each component a specific methodology was identified and applied. Different statistical approaches were used to evaluate the method to integrate the information related to different compartments within the EU and related to the buffer zone. These approaches were also preliminarily evaluated for their ability to describe the contribution of biodiversity and landscape components to ecosystem services. This methodological exploration provides useful indication for the development of a fully systemic approach to structural and functional biodiversity in vineyard agroecosystems, contributing to promote a multifunctional perspective for the all wine-growing sector.

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Prove preliminari dl caratterizzazione del vino gutturnio dei colli piacentini

The “GuIturnio dei Colli Piacentini” V.Q.PR.D. results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of the Piacenza district, identified by the DM 31-07-93 art. 3.
The present work concerns the “zonation” of this area, constituted by 3 valleys Tidone (A), Nure (B) and Arda (C )