Macrowine 2021
IVES 9 IVES Conference Series 9 Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Abstract

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase. In this research, we propose a quick way to access the aromatic potential of grape varieties through a scan of their volatilome by SIFT-MS and chemometrics approaches. During 3 sampling campaigns carried out in September 2020, we collected berries from 21 grapes varieties planted in a germplasm collection. For each variety, three replicate samples of 50g were gently crushed and put in 1L Schott bottles that were directly connected to a SIFT-MS equipment to analyse the headspace. Analytes injected in the SIFT-MS were ionized with 3 different reagent ions (H3O+, O2+. and NO+) to generate increased molecular fragmentation data (2). M/z data/ratios were first analysed with XlStats software (Addinsoft, Paris, France) using a one-way ANOVA treatment to determine the ions that enabled to discriminate the grape varieties. Then based on these discriminating ions, Principal Component Analysis (PCAs) were constructed and Hierarchical Clustering Analysis (HCA) ensued to create similarity groups. Finally, an ANOVA treatment was conducted to determine significant differencies in ions abondances between groups (1). For each homogenous group, a cultivar was selected to perform Headspace-Solid Phase Microextraction (HS-SPME) followed by Gas Chromatography-Mass Spectrometry (GC-MS) analyzes to connect SIFT-MS data to the composition in volatile compounds (3). Grape varieties were easily distinguishable based only on their SIFT-MS volatilome scan. The technique was able to distinguish high and low aroma compounds producers, and to organise grape varieties by similarity. We proved that SIFT-MS is a really quick and interesting tool with potential application in various fieds of viticulture such as phenotyping of grape varieties based on their volatile composition or studying of the impact of viticultural practices on the grape aroma composition using an easy to implement untargeted approach.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Thomas Baerenzung Dit Baron

PPGV, INP-PURPAN, University of Toulouse. ,Alban JACQUES, PPGV, INP-PURPAN, University of Toulouse Olivier GEFFROY, PPGV, INP-PURPAN, University of Toulouse Valérie SIMON, LCA, INP-ENSIACET, University of Toulouse Olivier YOBRÉGAT, IFV Sud-Ouest

Contact the author

Keywords

sift-ms, grapevine, volatilome, chemometrics, phenotyping

Citation

Related articles…

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Influence of nitrogen source on expression of genes involved in aroma production in Saccharomyces uvarum

Saccharomyces uvarum has interesting properties that can be exploited for the production of fermented beverages. Particularly, the cryotolerance and capacity to produce high amounts of volatile compounds offers new opportunities for the wine industry.

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.

Metabolic response of vitis vinifera and interspecific vitis sp. varieties to heat stress, water deficit and combined stress, using a metabolomic approach

As greenhouse gas emissions continue to rise, climate projections indicate an increased likelihood of heat waves and drier conditions in canada. these changes pose significant challenges to grapevine cultivation, particularly during critical growth stages such as new plantings. interspecific hybrid grape varieties, developed through different breeding programs that combine vitis vinifera with more robust species like v. riparia and v. labrusca varieties, are often touted for their potential resilience to environmental stress.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.