Macrowine 2021
IVES 9 IVES Conference Series 9 New plant protein extracts as fining agents for red wines

New plant protein extracts as fining agents for red wines

Abstract

AIM: Quinoa (Chenopodium quinoa) is a non-allergenic pseudocereal with a high protein content. The aim of this work was to determine the phenolic fining ability of quinoa protein extracts (QP), and to compare them against commercial proteinaceous fining agents.

METHODS: Quinoa seeds of the variety Regalona-Baer, cultivated in Santa Rosa Experimental Center (Chillán, Chile) and red wine samples (Petit Verdot and Malbec) from the Maule Region of Chile were used for this study. QP were obtained by alkaline extraction and isoelectric precipitation. The protein content of quinoa samples and QP was determined by the Dumas method with a nitrogen to protein conversion factor of 5.85. SDS-PAGE profile of QP was analysed by electrophoresis, according to the Laemmli method (1). The fining efficacy of QP was evaluated at 20°C at different doses and contact times (48 and 96 h) and compared against three commercial fining agents of animal and vegetal origin (Vegefine, Vegecoll and Gelatin). The total tannin content in wines were measured spectrophotometrically by the methyl cellulose precipitable (MCP) tannin assay (2) and the Harbertson-Adams tannin assay (3). The total phenolics were quantified by the Folin-Ciocalteu assay (4). The anthocyanin content was determined according to the HPLC-DAD method OIV-MA-AS315-11 for the analysis of major anthocyanins in red and rosé wines.

RESULTS: QP showed a content of 60% protein with molecular weight distribution of ̴ 35 kDa, ̴ 22 kDa and ̴ 10 kDa. QP treatments significantly reduced turbidity, total tannin and total phenolics in Petit Verdot wine at the two doses tested (30 and 50 g/hL) and in a similar proportion than the commercial fining agents. For all fining agents it was observed that tannin content decreased more after 96 hours of contact time (11-16%) than after 48 hours (5-11%) of treatment. Like so, QP fining resulted in a significant reduction of the tannin content in Malbec fined wine (20-25%), more so than when using the commercial fining agents (3-10%). For both wines, the color of the fined samples (measured as malvidin-3-glucoside equivalent at 520 nm) was not significantly affected by the treatments with QPs.

CONCLUSIONS:

 The results obtained suggest that QP could be an interesting alternative for wine fining with plant derived proteins; therefore, more studies on this subject are being performed.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Liudis L. Pino

University of Talca,V. Felipe LAURIE, University of Talca

Contact the author

Keywords

 wine, fining, plan ptoteins, quinoa, phenolics, tannin

Citation

Related articles…

Cover crops in viticulture

In this audio recording of the IVES science meeting 2022, Gonzaga Santesteban (Department of Agronomy, Biotechnology and Food Science, Public University of Navarra (UPNA), Pamplona, Navarra, Spain) speaks about cover crops in viticulture. This presentation is based on 2 original articles accessible for free on OENO One.

Seed phenolics oxidation: development of a new ripening index 

During ripening seed tannins evolve, as demonstrated by the taste and color changes. In this work we tried to develop an objective, easy and fast index, useful for winemakers. In this direction we propose two different spectrophotometric indexes, one related to the molecular structure and tannin subunits linkages, and the other related to the antioxidant properties. Especially the second one gave very interesting and unexpected results.

Impact of toasting on oak wood aroma: creation of an oak wood aroma wheel

The impact of toasting process to produce aroma from oak wood intrinsic composition is well documented. It is admitted that such complexity contribute to the wine quality after barrel ageing. Despite our knowledge on the molecular identification of aroma impact compounds of oak wood, little research have been carried out, on a sensory level, on the aroma diversity of toasted oak wood.

Assessing bunch architecture for grapevine yield forecasting by image analysis 

It is fundamental for wineries to know the potential yield of their vineyards as soon as possible for future planning of winery logistics. As such, non-invasive image-based methods are being investigated for early yield prediction. Many of these techniques have limitations that make it difficult to implement for practical use commercially. The aim of this study was to assess whether yield can be estimated using images taken in-field with a smartphone at different phenological stages.

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.