Macrowine 2021
IVES 9 IVES Conference Series 9 New plant protein extracts as fining agents for red wines

New plant protein extracts as fining agents for red wines

Abstract

AIM: Quinoa (Chenopodium quinoa) is a non-allergenic pseudocereal with a high protein content. The aim of this work was to determine the phenolic fining ability of quinoa protein extracts (QP), and to compare them against commercial proteinaceous fining agents.

METHODS: Quinoa seeds of the variety Regalona-Baer, cultivated in Santa Rosa Experimental Center (Chillán, Chile) and red wine samples (Petit Verdot and Malbec) from the Maule Region of Chile were used for this study. QP were obtained by alkaline extraction and isoelectric precipitation. The protein content of quinoa samples and QP was determined by the Dumas method with a nitrogen to protein conversion factor of 5.85. SDS-PAGE profile of QP was analysed by electrophoresis, according to the Laemmli method (1). The fining efficacy of QP was evaluated at 20°C at different doses and contact times (48 and 96 h) and compared against three commercial fining agents of animal and vegetal origin (Vegefine, Vegecoll and Gelatin). The total tannin content in wines were measured spectrophotometrically by the methyl cellulose precipitable (MCP) tannin assay (2) and the Harbertson-Adams tannin assay (3). The total phenolics were quantified by the Folin-Ciocalteu assay (4). The anthocyanin content was determined according to the HPLC-DAD method OIV-MA-AS315-11 for the analysis of major anthocyanins in red and rosé wines.

RESULTS: QP showed a content of 60% protein with molecular weight distribution of ̴ 35 kDa, ̴ 22 kDa and ̴ 10 kDa. QP treatments significantly reduced turbidity, total tannin and total phenolics in Petit Verdot wine at the two doses tested (30 and 50 g/hL) and in a similar proportion than the commercial fining agents. For all fining agents it was observed that tannin content decreased more after 96 hours of contact time (11-16%) than after 48 hours (5-11%) of treatment. Like so, QP fining resulted in a significant reduction of the tannin content in Malbec fined wine (20-25%), more so than when using the commercial fining agents (3-10%). For both wines, the color of the fined samples (measured as malvidin-3-glucoside equivalent at 520 nm) was not significantly affected by the treatments with QPs.

CONCLUSIONS:

 The results obtained suggest that QP could be an interesting alternative for wine fining with plant derived proteins; therefore, more studies on this subject are being performed.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Liudis L. Pino

University of Talca,V. Felipe LAURIE, University of Talca

Contact the author

Keywords

 wine, fining, plan ptoteins, quinoa, phenolics, tannin

Citation

Related articles…

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate.

Evaluation of “Accentuated cut edges” technique on the release of varietal thiols and their precursors in Shiraz and Sauvignon blanc wine production

Accentuated cut edges (ACE) is a novel grape crushing technique used sequentially after a conventional crusher to increase the extraction rate and content of polyphenolics, as shown for Pinot noir wine. This inspired us to apply the technique during Shiraz and Sauvignon blanc winemaking, primarily to assess its impact on the extraction of varietal thiol precursors in grape must/juice and formation of varietal thiols in the resultant wines

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four