Macrowine 2021
IVES 9 IVES Conference Series 9 From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

Abstract

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps (Kotseridis, et al., 1999), as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine. The aim of this study was to investigate the volatile chemical composition of wines obtained from grapes harvested in selected vineyards during three consecutive vintages, assess the existence of recurring patterns that could represent unique aroma chemical signatures and to identify key grape compositional features underling such aroma signature.

METHODS: Corvina and Corvinone grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three consecutive vintages. Winemaking was performed under standardized conditions. Free volatile compounds and glycosidic precursors were analysed with GC-MS analysis co. Sensory characteristics of the wines have been investigated through sorting tasks performed with semi-trained panel.

RESULTS: Application of multivariate data analysis techniques allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine regardless of vintages. The main drivers associated with these chemical signatures were terpenes (linalool, α-terpineol), norisoprenoids (vitispirane, TDN, TPB), and, unexpectedly some fermentation derived esters. Wines’ terpenes content was related with grapes terpenes pool. In particular variations in wine linalool content were strongly associated with the grape content of different linalool forms. Finally, in the case of esters, a strong correlation between grape content of yeast assimilable nitrogen (YAN) and wine ester content was observed, further broadening the boundaries of vineyard factors able to influence wine aroma. Patterns of odor similarities were observed during sensory evaluation, indicating a recurring association between geographical origin and occurrence of aroma compounds such as linear and cyclic terpenes, esters or norisoprenoids. 

CONCLUSIONS: 

This study provides evidence for the existence of volatile chemical signatures that are representative of geographical origin. Identification of grapes compositional characteristics related to the main drivers of wines chemical signature provides clues to support producers in identifying and managing appropriate vineyard and/or winemaking practices, in the quest of producing wines expressing their sense of place and ‘terroir’

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

chemical signature of geographical identity, red wine aroma, valpolicella, terroir, crus

Citation

Related articles…

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Smart microgrid: how to reduce costs and CO2 emissions in wineries and vineyards

The wine sector is greatly threatened by climate change, but is also one of its contributors.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).