Macrowine 2021
IVES 9 IVES Conference Series 9 From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

Abstract

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps (Kotseridis, et al., 1999), as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine. The aim of this study was to investigate the volatile chemical composition of wines obtained from grapes harvested in selected vineyards during three consecutive vintages, assess the existence of recurring patterns that could represent unique aroma chemical signatures and to identify key grape compositional features underling such aroma signature.

METHODS: Corvina and Corvinone grapes were harvested from five different vineyards located in two sub-regions within Valpolicella during three consecutive vintages. Winemaking was performed under standardized conditions. Free volatile compounds and glycosidic precursors were analysed with GC-MS analysis co. Sensory characteristics of the wines have been investigated through sorting tasks performed with semi-trained panel.

RESULTS: Application of multivariate data analysis techniques allowed to identify volatile chemical patterns representing the unique aroma chemical signature of the geographical origin of each wine regardless of vintages. The main drivers associated with these chemical signatures were terpenes (linalool, α-terpineol), norisoprenoids (vitispirane, TDN, TPB), and, unexpectedly some fermentation derived esters. Wines’ terpenes content was related with grapes terpenes pool. In particular variations in wine linalool content were strongly associated with the grape content of different linalool forms. Finally, in the case of esters, a strong correlation between grape content of yeast assimilable nitrogen (YAN) and wine ester content was observed, further broadening the boundaries of vineyard factors able to influence wine aroma. Patterns of odor similarities were observed during sensory evaluation, indicating a recurring association between geographical origin and occurrence of aroma compounds such as linear and cyclic terpenes, esters or norisoprenoids. 

CONCLUSIONS: 

This study provides evidence for the existence of volatile chemical signatures that are representative of geographical origin. Identification of grapes compositional characteristics related to the main drivers of wines chemical signature provides clues to support producers in identifying and managing appropriate vineyard and/or winemaking practices, in the quest of producing wines expressing their sense of place and ‘terroir’

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Luzzini

University of Verona,Davide SLAGHENAUFI, University of Verona Maurizio, UGLIANO, University of Verona Jessica, SAMANIEGO-SOLIS, University of Verona Riccardo TEDESCHI, Azienda Agricola F.lli Tedeschi

Contact the author

Keywords

chemical signature of geographical identity, red wine aroma, valpolicella, terroir, crus

Citation

Related articles…

Landscapes of Vines and Wines Patrimony – Stakes – Valorisation

The interaction between wine and landscapes is of an unsuspected richness. On the one side, the vineyards form part of the landscapes which they model. On the other side, the wines are related in their perception to the image of a region, a landscape and are at the origin of a cultural richness.

Grafting, the most sustainable way to control phylloxera over 150 years

Just over 150 years ago, phylloxera, daktulosphaera vitifoliae, was introduced to europe, and particularly france, from north america via imports of american vitis plants. This aphid, with its complex biology and life cycle, has spread rapidly to most vineyards, causing rapid and lethal decline of v. Vinifera vines due to the primary and secondary damage it causes to the roots. In response to this pest, and given the economic importance of the french wine sector, professional representatives organised into ‘agricultural societies’, scientists and public authorities rallied together to identify the exact causes, seek solutions and try to stem the serious socio-economic crisis that ensued.

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

Resilience analysis in viticulture: an approach based on expert knowledge elicitation

The study aims to address the issue of resilience to climate change in viticulture through the adoption of the expert knowledge elicitation (EKE) approach.

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.