Macrowine 2021
IVES 9 IVES Conference Series 9 Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Abstract

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product. Pre-treatments to improve cork powder biosorption performance have been studied, such as washing with solvents, soaking in salt, acid, or basic solutions, chemical oxidation, and thermal treatment. In the last decades, millions of litters of red wine have become contaminated with the yeast Dekkera/Brettanomyces acquiring an unpleasant off-flavour, named “Brett character”. This work aims to explore the use of the abundant cork powder waste, either in its natural form or after its optimisation by simple physical and chemical treatments, trying to get a new cheap and sustainable wine fining agent for removing negative volatile phenols from red wine.

METHODS: A simple process was developed to increase the performance of the natural cork powder (CKN). CKN was treated to remove the dichloromethane and ethanol extractives (9.9% of dichloromethane-ethanol extractives, CKF). CKF was sieved to obtain a particle size below 75 μm (29% of the CKF, CKF75).

RESULTS: Cork adsorptive performance improvement by removal of cork extractives, air removal, and ethanol impregnation allowed us to obtain 41% to 62% of 4-ethylphenol (4-EP) and 50% to 53% of 4-ethylguaiacol (4-EG) removal from red wine. Optimised cork powder recovers significantly the positive fruity and floral sensory of red wine.

 

CONCLUSIONS:

By simple treatments the cork powder increased significantly its performance in the negative volatile phenols removing, presenting better performance than activate carbons or chitosan. The wine treated with optimised cork powder recovers significantly its sensorial quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

L. Filipe-Ribeiro 

Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.,Fernanda Cosme,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal. Fernando Nunes,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.

Contact the author

mailto:

Keywords

volatile phenols, removing, optimised cork powder

Citation

Related articles…

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

Grape must quality and mesoclimatic variability in Fruška Gora wine-growing region, Serbia

The Fruška Gora mountain is a traditional wine-growing region in Serbia situated in the Pannonian Basin. Due to such a position, the vicinity of the Danube River and the presence of concave configuration, it is suitable for grape production. This paper provides analyses of spatial variations in meteorological parameters and grape juice quality within Fruška Gora wine region over three consecutive vintages (2018-2020). The examined period can be defined as warm with cool nights during September (AVG 18,9°C; GDD 1918°C; CI 12°CF) and with the presence of mesoclimatic variability. The East part of the study area was somewhat drier and hotter compared to other parts of the region. The analyses of grape must samples (190 in total) of five cultivars (Cabernet-Sauvignon, Merlot, Chardonnay, Sauvignon blanc and Grašac (Welschriesling)) commonly grown across the region (19 sites), were performed using Fourier Transform Infrared Technology (FTIR). Among all cultivars, Sauvignon blanc was harvested first in the East area (DOY=246±5, GDD at harvest=1552±74, 22.2±0.7 °Brix), while the latest harvest was recorded for Cabernet-Sauvignon in the West (DOY=283±5, GDD at harvest=1936±187, 23.4±1.0 °Brix ). Both the red and white cultivars had higher acidity and YAN in the grape must if the vines were grown in the North and East compared to South and West areas. According to PCA analysis, Grašac showed the lowest variation in grape must chemical composition. Thus, the results confirm that Grašac is the most stable cultivar in Fruška Gora. All monitored cultivars reached technological fruit ripeness by the end of the growing season. However, it was difficult to reach full ripeness of red cultivars, mostly beacuse of uncoupling of technolocical and phenolic ripeness. Thus, Cabernet-Sauvignon had higher variations in GDD sums at harvest compared to other cultivars, which probably increased variations in grape must quality.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Gamay And Gamaret Winemaking Processes Using Stems: Impact On The Wine Aromatic Composition.

Stems may bring various benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity.

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.