Macrowine 2021
IVES 9 IVES Conference Series 9 Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Abstract

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product. Pre-treatments to improve cork powder biosorption performance have been studied, such as washing with solvents, soaking in salt, acid, or basic solutions, chemical oxidation, and thermal treatment. In the last decades, millions of litters of red wine have become contaminated with the yeast Dekkera/Brettanomyces acquiring an unpleasant off-flavour, named “Brett character”. This work aims to explore the use of the abundant cork powder waste, either in its natural form or after its optimisation by simple physical and chemical treatments, trying to get a new cheap and sustainable wine fining agent for removing negative volatile phenols from red wine.

METHODS: A simple process was developed to increase the performance of the natural cork powder (CKN). CKN was treated to remove the dichloromethane and ethanol extractives (9.9% of dichloromethane-ethanol extractives, CKF). CKF was sieved to obtain a particle size below 75 μm (29% of the CKF, CKF75).

RESULTS: Cork adsorptive performance improvement by removal of cork extractives, air removal, and ethanol impregnation allowed us to obtain 41% to 62% of 4-ethylphenol (4-EP) and 50% to 53% of 4-ethylguaiacol (4-EG) removal from red wine. Optimised cork powder recovers significantly the positive fruity and floral sensory of red wine.

 

CONCLUSIONS:

By simple treatments the cork powder increased significantly its performance in the negative volatile phenols removing, presenting better performance than activate carbons or chitosan. The wine treated with optimised cork powder recovers significantly its sensorial quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

L. Filipe-Ribeiro 

Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.,Fernanda Cosme,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal. Fernando Nunes,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.

Contact the author

mailto:

Keywords

volatile phenols, removing, optimised cork powder

Citation

Related articles…

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

Relation between the environmental factors of the terroir system and flavan-3-ol composition of grape berry seeds and skin at pre-veraison stage and harvest Influence of dedicate viticultural management

Quantity and quality of flavonoïds in grape berries are important parts of their global quality. Several studies had shown that tannins are responsible for some major flavour properties of red wines such as colour, bitterness and astringency. Nevertheless, their synthesis and properties are still misunderstood. Some studies had suggested that the tannic pool was set before veraison. Thus, the comprehension of the relations between environment and setting of this tannic pool, up to the harvest, is not sufficient.

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.

HAZE RISK ASSESSMENT OF MUSCAT MUSTS AND WINES : WHICH LABORATORY TEST ALLOWS A RELIABLE ESTIMATION OF THE HEATWAVE REALITY?

Wines made from Muscat d’Alexandria grapes exhibit a high haze risk. For this reason, they are systematically treated with bentonite, on the must and sometimes also on wine. In most oenological labora-tories and in companies (trade, cooperatives, independent winegrowers), the test that is by far the most widely used, on a worldwide scale, remains the heat test at 80°C for 30 minutes to 2 hours (and some-times up to 6 hours). The tannin test (sometimes coupled with a heat treatment) and the Bentotest are still used. In this study, we show that all these tests give much higher estimates of the haze risk than the risk assessed by a 24-48h treatment at 42°C, which represents a heat wave.

Uncovering the influence of vineyard management on fungal community structure and functional diversity within above-ground compartments

In viticulture, microbial communities – particularly fungi – play a vital role in plant health, disease management, and grape quality.