Macrowine 2021
IVES 9 IVES Conference Series 9 Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Abstract

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product. Pre-treatments to improve cork powder biosorption performance have been studied, such as washing with solvents, soaking in salt, acid, or basic solutions, chemical oxidation, and thermal treatment. In the last decades, millions of litters of red wine have become contaminated with the yeast Dekkera/Brettanomyces acquiring an unpleasant off-flavour, named “Brett character”. This work aims to explore the use of the abundant cork powder waste, either in its natural form or after its optimisation by simple physical and chemical treatments, trying to get a new cheap and sustainable wine fining agent for removing negative volatile phenols from red wine.

METHODS: A simple process was developed to increase the performance of the natural cork powder (CKN). CKN was treated to remove the dichloromethane and ethanol extractives (9.9% of dichloromethane-ethanol extractives, CKF). CKF was sieved to obtain a particle size below 75 μm (29% of the CKF, CKF75).

RESULTS: Cork adsorptive performance improvement by removal of cork extractives, air removal, and ethanol impregnation allowed us to obtain 41% to 62% of 4-ethylphenol (4-EP) and 50% to 53% of 4-ethylguaiacol (4-EG) removal from red wine. Optimised cork powder recovers significantly the positive fruity and floral sensory of red wine.

 

CONCLUSIONS:

By simple treatments the cork powder increased significantly its performance in the negative volatile phenols removing, presenting better performance than activate carbons or chitosan. The wine treated with optimised cork powder recovers significantly its sensorial quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

L. Filipe-Ribeiro 

Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.,Fernanda Cosme,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal. Fernando Nunes,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.

Contact the author

mailto:

Keywords

volatile phenols, removing, optimised cork powder

Citation

Related articles…

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

Monitoring water deficit in vineyards by means of Red and Infrared measurements

Vineyard water availability is one of the most important variables both in plant’s production and wine quality, once it regulates several processes, among which the stomata activity. To avoid water deficit, wine producers introduced artificial irrigation in their vineyard, using a semi-empirical process to calculate water amount.

Landscape study of the Suzette rural district. A vineyard in the heart of the Dentelles de Montmirail

Le territoire de Suzette se développe sur un grand coteau viticole et boisé situé au cœur du site naturel des Dentelles de Montmirail (40km au nord d’Avignon). Ce site est à la fois l’un des pôles d’attraction touristique du département et le lieu d’une production viticole renommée (Gigondas, Vacqueyras, Beaumes de Venise, … ). Cet ensemble remarquable de terrasses viticoles et de crêtes rocheuses et boisées, forme un des paysages emblématiques du Vaucluse. La commune est actuellement soumise à une importante pression foncière due à une forte demande résidentielle. Le paysage du coteau forme et possède de ce fait un patrimoine culturel de valeur et une image de marque importante pour la production viticole locale.

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.