Macrowine 2021
IVES 9 IVES Conference Series 9 Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Abstract

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product. Pre-treatments to improve cork powder biosorption performance have been studied, such as washing with solvents, soaking in salt, acid, or basic solutions, chemical oxidation, and thermal treatment. In the last decades, millions of litters of red wine have become contaminated with the yeast Dekkera/Brettanomyces acquiring an unpleasant off-flavour, named “Brett character”. This work aims to explore the use of the abundant cork powder waste, either in its natural form or after its optimisation by simple physical and chemical treatments, trying to get a new cheap and sustainable wine fining agent for removing negative volatile phenols from red wine.

METHODS: A simple process was developed to increase the performance of the natural cork powder (CKN). CKN was treated to remove the dichloromethane and ethanol extractives (9.9% of dichloromethane-ethanol extractives, CKF). CKF was sieved to obtain a particle size below 75 μm (29% of the CKF, CKF75).

RESULTS: Cork adsorptive performance improvement by removal of cork extractives, air removal, and ethanol impregnation allowed us to obtain 41% to 62% of 4-ethylphenol (4-EP) and 50% to 53% of 4-ethylguaiacol (4-EG) removal from red wine. Optimised cork powder recovers significantly the positive fruity and floral sensory of red wine.

 

CONCLUSIONS:

By simple treatments the cork powder increased significantly its performance in the negative volatile phenols removing, presenting better performance than activate carbons or chitosan. The wine treated with optimised cork powder recovers significantly its sensorial quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

L. Filipe-Ribeiro 

Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.,Fernanda Cosme,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal. Fernando Nunes,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.

Contact the author

mailto:

Keywords

volatile phenols, removing, optimised cork powder

Citation

Related articles…

Talking about terroir

When talking about terroir, scientists and lay wine tasters, very much including wine journalists and wine growers, too often talk past one another.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.

The chain of effects between sunburn necroses and rot infestation in the context of climate change

Climate change will increasingly challenge future viticulture due to long-enduring and extreme weather conditions, jeopardizing yield and wine quality in various ways.

Enhancement of the terroir

The terroir is today the most important factor of production and development in the wine sector. In a context where the commercial challenge is taking place all over the place, the distinction between traditional and “new” producing countries is not only a geographical, cultural and technical counter position but also, and above all, a legal one. Indeed, the system of standards present in the “old world” (plantation rights, production decrees, yields per hectare, etc.) which may represent, in the short term on the global market, constraints to development and product innovation must become an opportunity. But threats become opportunities, if we work, from the vine to the market, via communication, more on the elements of difference than on those of affinity.

Effects of organic mulches on the soil environment and yield of grapevine

Farming management practices aiming at conserving soil moisture have been developed in arid and semiarid-areas facing water scarcity problems. Organic mulching is an effective method to manipulate the crop-growing microclimate increasing crop yield by controlling soil temperature, and retaining soil moisture by reducing soil evaporation. In this sense, the effectiveness of different organic mulching materials (straw mulch and grapevine pruning debris) applied within the row of a vineyard was evaluated on the soil and on the vine in a Tempranillo vineyard located in La Rioja (Spain). Organic mulches were compared with a traditional bare soil management technique (based on the use of herbicides to avoid weed incidence). Mulching coverages favourably influenced the soil water retention throughout all the grapevine vegetative cycle. However, the soil-moisture variation was not the same under different mulching materials, being the straw mulch (SM) the one that retained more water in comparison with grapevine pruning debris (GPD) based-cover. The changes of soil moisture in the upper surface layer (0–10 cm) were highly dynamic, probably due to water vapour fluxes across the soil-atmospheric interface. However, both, SM and GPD reduced these fluctuations as compared with bare soils. A similar trend occurred with soil temperature. Both organic mulches altered soil temperature in comparison with bare soil by reducing soil temperature in summer and raising it in winter. Moreover, the same buffering effect for the temperature on the covered soil also remains in the deeper layers. To conclude, we could see that organic mulching had a positive impact on soil-moisture storage and soil temperature and the extent of this effect depends on the type of mulching materials. These changes led to higher rates of photosynthesis and stomatal conductivity compared to bare soils, also favouring crop growth and grape yields.