Macrowine 2021
IVES 9 IVES Conference Series 9 Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Sustainable wine industry challenge: optimised cork powder us new sustainable fining agent to remove negative volatile phenols

Abstract

AIM: Cork, the bark of Quercus suber L. is a natural, renewable, sustainable, and biodegradable raw material, representing an abundant and cheap source of raw material. Portugal is the major cork producer (185,000 tons) processing about three-quarters of the world’s cork, generating up to 25 wt % of cork dust as a by-product. Pre-treatments to improve cork powder biosorption performance have been studied, such as washing with solvents, soaking in salt, acid, or basic solutions, chemical oxidation, and thermal treatment. In the last decades, millions of litters of red wine have become contaminated with the yeast Dekkera/Brettanomyces acquiring an unpleasant off-flavour, named “Brett character”. This work aims to explore the use of the abundant cork powder waste, either in its natural form or after its optimisation by simple physical and chemical treatments, trying to get a new cheap and sustainable wine fining agent for removing negative volatile phenols from red wine.

METHODS: A simple process was developed to increase the performance of the natural cork powder (CKN). CKN was treated to remove the dichloromethane and ethanol extractives (9.9% of dichloromethane-ethanol extractives, CKF). CKF was sieved to obtain a particle size below 75 μm (29% of the CKF, CKF75).

RESULTS: Cork adsorptive performance improvement by removal of cork extractives, air removal, and ethanol impregnation allowed us to obtain 41% to 62% of 4-ethylphenol (4-EP) and 50% to 53% of 4-ethylguaiacol (4-EG) removal from red wine. Optimised cork powder recovers significantly the positive fruity and floral sensory of red wine.

 

CONCLUSIONS:

By simple treatments the cork powder increased significantly its performance in the negative volatile phenols removing, presenting better performance than activate carbons or chitosan. The wine treated with optimised cork powder recovers significantly its sensorial quality.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

L. Filipe-Ribeiro 

Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.,Fernanda Cosme,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal. Fernando Nunes,  Chemistry Research Centre – Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.

Contact the author

mailto:

Keywords

volatile phenols, removing, optimised cork powder

Citation

Related articles…

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

Consumo hídrico de la vid, c.v. Listán negro, en la comarca de Tacoronte-Acentejo. Tenerife

Durante el bienio 1998-1999 se estudió el uso consuntivo de cultivos de viña var. Listán negro, en cuatro fincas situadas en la Comarca de Tacoronte-Acentejo, en la isla de Tenerife.

Innovative approaches in the evaluation of the spatial and temporal biodiversity of grape varieties from the Portuguese Bairrada appellation using LIMM-PCA: a study across five harvests

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard and wine ecosystems is required, as well as the varieties plasticity. Particular attention should be devoted to the spatial and temporal interactions between authorized or recommended varieties for a specific demarcated region and clime and vineyard conditions (such as soil type, orientation of the lines, age of the vine, density of planting, harvesting practices, among others).

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Vineyard’s ozone application to induce secondary metabolites accumulation in grapes and wine

In viticulture sector to find new tools for pest management has become an urgent necessity. Hence, grapevines cultivation has high production rate demand and to meet the intensive market request, a massive use of pesticides is often required. In addition to the environmental problems associated with large use of chemicals, there is an increasing number of consumers which are asking for