Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of microwave maceration and SO2 free vinification on volatile composition of red wines

Effect of microwave maceration and SO2 free vinification on volatile composition of red wines

Abstract

This study evaluates the effect of microwave treatment in grape maceration on the content of free and glycosidically bound varietal compounds) of must and wine and on the overall aroma of wines produced in the presence and absence of SO2. The volatile compounds were isolated by solid phase extraction and analyzed by gas chromatography-mass spectrometry, carrying out a sensory evaluation of wines by quantitative descriptive analysis. Microwave treatment significantly increased the free and bound fraction of most varietal compounds must. Wines from microwave maceration showed faster fer-mentation kinetics and shorter lag phase, resulting in an increase in some volatile compounds of sensory relevance. The absence of SO2 resulted in a decrease in concen-tration of some volatile compounds, mainly fatty acids and esters. The sensory assessment of wines from microwave treatment was higher than the control wine, especially in wines without SO2, which had higher scores in the “red berry” and “floral” attributes and more intensity of aroma. This indicates that treatment with MW in maceration can be very positive to increase the aroma of wines reducing the presence of SO2.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Raquel Muñoz García 

Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain. ,María Consuelo Díaz-Maroto Area of Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10,13071 Ciudad Real

Contact the author

Keywords

microwave maceration, red wine; volatile compounds; aroma

Citation

Related articles…

Better understanding on the fungal chitosan and derivatives antiseptic effect on Brettanomyces bruxellensis in wine.

The addition of fungal chitosan in wine is allowed since 2009 to release some spoilage microorganisms such as Brettanomyces bruxellensis (OIV/OENO 338A/2009; EC 53/2011).

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression

The socioclimatic dynamics and the table grape production during a long-drought: the case of Brazilian semiarid

In 2022, the area cultivated with grapes in Brazil counted 75 thousand ha. About 1/2 of the grape production is located in rio grande do sul state, in South Brazil. Nonetheless, the northeast region, especially the Sao Francisco River Valley (SFRV), is increasing its area and production, mainly pushed by table grapes. The states of bahia and pernambuco already respond for circa 1/3 of brazilian grape production.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.