Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Abstract

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones. Varietal lactones identified in red wines contribute to cooked fruity flavors such as dried peach, apricot, figs and dried prune. Recent studies have demonstrated the key impact of the harvest date on the lactone content in wine. The influence of the temperature during grape ripening was also underlined. Many lactones have been detected in wines, but one of them, gamma-nonalactone, possesses a low detection threshold (Dth 27 µg/L), and has been detected at high concentration in wine (up to 200 µg/L). Thus, it contributes directly to the cooked peach flavors in red wines. All these observation led us to investigate the chemical and biochemical mechanisms associated with gamma-nonalactone formation in must from Merlot and Cabernet-Sauvignon grapes, a LC-MS/MS method was developed and validated. 4-oxononanoic acid is identified for the first time in must sample whereas its concentration was ranged from some µg/L to more than 60 µg/L. Additionally, in order to demonstrate the impact of alcoholic fermentation on the formation of gamma-nonalactone, we synthesized labeled d6-4-oxononanoic acid and observed a positive correlation between d6-4-oxononanoic acid concentration added and d6-gamma-nonalactone formed in spiked samples.In conclusion, our results demonstrated the presence of 4-oxononanoic acid in must and its biotransformation to gamma-nonalactone during alcoholic fermentation of red grape varieties. We validate for the first time its role of precursor of the odorous gamma-nonalactone in wine

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Philippine De Ferron

Phd Student-Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Cécile THIBON – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA Svitlana SHINKARUK – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Philippe DARRIET – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Alexandre PONS – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavors, lactones, gamma-nonalactone, precursors, 4-oxononanoic acid

Citation

Related articles…

Pests and biodiversity management on a climate change scenario: A practical case

The weather anomalies comparing the 1971-2000 time frame and the last years has showned a dramatic scenario when, in some months, average temperature in above 3ºC and the reduction in precipitation in more than 30%.

The impact of Saccharomyces yeasts on wine varietal aroma, wine aging and wine longevity

The objective of the present work is to assess yeast effects on the development of wine varietal aroma throughout aging and on wine longevity.

Three independent experiments were carried out; two fermenting semi-synthetic musts fortified with polyphenols and aroma precursors extracted from Tempranillo (1) or Albariño (2) grapes and with synthetic precursors of polyfunctional mercaptans (PFMs), and a third in which a must, mixture of 6 different grape varieties was used. In all cases, fermentations were carried out by different Saccharomyces cerevisiae strains and one S. kudriavzevii, and the obtained wines were further submitted to anoxic accelerated aging to reproduce bottle aging. The volatile profile of the wines was analyzed using several chromatographic procedures, in order to provide a comprehensive evaluation of wine aroma. Aroma compounds analyzed included fermentation volatile metabolites, grape-derived aroma compounds including PFMs, and Strecker aldehydes (SA).

Results revealed that the effects of yeast on wine aroma throughout its self-life extend along three main axes:

1. A direct or indirect action on primary varietal aroma and on its evolution during wine
aging.

2. The direct production of SA during fermentation and/or their delayed formation by producing the required reagents (amino acids + dicarbonyls) for Strecker degradation
during anoxic aging.

3. Producing acids (leucidic, branched acids) precursors to fruity esters. More specifically, and leaving aside the infrequent de novo formation, the action of the different strains of yeast on primary varietal aroma takes four different forms:

1.- Speeding the hydrolysis of aroma precursors, which leads to early aroma formation without changing the amount of aroma formed. In the case of labile molecules, such as linalool, the enhancement of young wine aroma implies a short-living wine. 2.- Metabolizing the aroma precursor, reducing the amounts of aroma formed, which can be of advantage for negative aroma compounds, such as TDN or guaiacol; 3.- Transforming grape components into aroma precursors, increasing the amounts of aroma formed, as for ethyl cinnamate, leucidic acid or vinylphenols; 4.- Forming reactive species such as vinylphenols able to destroy varietal polyfunctional mercaptans.

Overall, it can be concluded that the yeast carrying alcoholic fermentation not only influences fermentative wine aroma but also affects to the wine varietal aroma, to its evolution during aging and to the development of oxidative off-odors

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines

Altered lignans accumulation in a somatic variant of Tempranillo with increased extractability of polyphenols during winemaking

Vegetative propagation of grapevines can generate spontaneous somatic variations, providing a valuable source for cultivar improvement. In this context, natural variation in the composition of phenolic compounds in grapevine berries and seeds stands as a pivotal factor in crafting wines with diverse oenological profiles from the same cultivar. To deepen on the understanding of the physiological and genetic mechanisms driving somatic variation in grape phenolics, here we characterized a somatic variant from Tempranillo Tinto, the clone VN21, that exhibits an intense reduced berry skin cuticle and increased extractability of phenolic compounds during wine fermentation.

Polysaccharide families of lyophilized extracts obtained from unfermented varietal grape pomaces

The recovery of bioactive compounds from grape and wine by-products is currently an important objective for revaluation and sustainability. Grape pomace is one of the main by-products and is a rich source of some bioactive compounds. The aim of this study was to evaluate the polysaccharide (PS) composition of extracts obtained from pomaces of different white and red grape varieties of Castilla y León. Grape pomaces were obtained after the pressing in the winemaking process.