Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Abstract

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones. Varietal lactones identified in red wines contribute to cooked fruity flavors such as dried peach, apricot, figs and dried prune. Recent studies have demonstrated the key impact of the harvest date on the lactone content in wine. The influence of the temperature during grape ripening was also underlined. Many lactones have been detected in wines, but one of them, gamma-nonalactone, possesses a low detection threshold (Dth 27 µg/L), and has been detected at high concentration in wine (up to 200 µg/L). Thus, it contributes directly to the cooked peach flavors in red wines. All these observation led us to investigate the chemical and biochemical mechanisms associated with gamma-nonalactone formation in must from Merlot and Cabernet-Sauvignon grapes, a LC-MS/MS method was developed and validated. 4-oxononanoic acid is identified for the first time in must sample whereas its concentration was ranged from some µg/L to more than 60 µg/L. Additionally, in order to demonstrate the impact of alcoholic fermentation on the formation of gamma-nonalactone, we synthesized labeled d6-4-oxononanoic acid and observed a positive correlation between d6-4-oxononanoic acid concentration added and d6-gamma-nonalactone formed in spiked samples.In conclusion, our results demonstrated the presence of 4-oxononanoic acid in must and its biotransformation to gamma-nonalactone during alcoholic fermentation of red grape varieties. We validate for the first time its role of precursor of the odorous gamma-nonalactone in wine

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Philippine De Ferron

Phd Student-Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Cécile THIBON – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA Svitlana SHINKARUK – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Philippe DARRIET – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Alexandre PONS – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavors, lactones, gamma-nonalactone, precursors, 4-oxononanoic acid

Citation

Related articles…

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.

Vulnerability of vineyard soils to compaction: the case study of DOC Piave (Veneto region, Italy)

The objective of this work is to study the vulnerability of vineyard soil to compaction.

Identification of 4-hydroxy-2-nonenal, a gamma nonalactone precursor in must and wine from Bordeaux cultivars

Various molecular compounds are responsible for the complex mixture of fragrances that give wine its aroma. In particular, the ‘cooked fruit’ aroma found in red wines from hot and/or dry vintages or from the vinification of late harvested grapes has been intensively investigated in recent years. Lactones and especially γ-nonalactone were found to be responsible for the ‘cooked fruit’

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Le Dipartimento di Progettazione dell ‘Architettura del Politecnico di Milano et l’Istituto di Viticoltura della Facoltà d’Agraria di Piacenza dell’Università Cattolica del Sacra Cuore, ont elaboré une proposition pour réaliser, dans l’aire de colline de la province de Piacenza, un Parco Produttivo Agrovitivinicolo.