Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Abstract

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones. Varietal lactones identified in red wines contribute to cooked fruity flavors such as dried peach, apricot, figs and dried prune. Recent studies have demonstrated the key impact of the harvest date on the lactone content in wine. The influence of the temperature during grape ripening was also underlined. Many lactones have been detected in wines, but one of them, gamma-nonalactone, possesses a low detection threshold (Dth 27 µg/L), and has been detected at high concentration in wine (up to 200 µg/L). Thus, it contributes directly to the cooked peach flavors in red wines. All these observation led us to investigate the chemical and biochemical mechanisms associated with gamma-nonalactone formation in must from Merlot and Cabernet-Sauvignon grapes, a LC-MS/MS method was developed and validated. 4-oxononanoic acid is identified for the first time in must sample whereas its concentration was ranged from some µg/L to more than 60 µg/L. Additionally, in order to demonstrate the impact of alcoholic fermentation on the formation of gamma-nonalactone, we synthesized labeled d6-4-oxononanoic acid and observed a positive correlation between d6-4-oxononanoic acid concentration added and d6-gamma-nonalactone formed in spiked samples.In conclusion, our results demonstrated the presence of 4-oxononanoic acid in must and its biotransformation to gamma-nonalactone during alcoholic fermentation of red grape varieties. We validate for the first time its role of precursor of the odorous gamma-nonalactone in wine

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Philippine De Ferron

Phd Student-Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Cécile THIBON – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA Svitlana SHINKARUK – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Philippe DARRIET – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Alexandre PONS – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavors, lactones, gamma-nonalactone, precursors, 4-oxononanoic acid

Citation

Related articles…

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures

Impact of enological enzymes on aroma profile of Prosecco wines during second fermentation and sur lie aging

Proseccco is a famous italian Protected Designation of Origin (PDO) produced in two regions: Veneto e Friuli Venezia Giulia, however, the production is mainly concentrated in the province of Treviso. These territories are characterized by plains with some hilly areas and temperate climate. Its Production regulation provides a minimum utilization of 85% of Glera grapes, a local white grape variety, and up to a maximum of 15% of other local and international varieties. Prosecco second fermentation takes place, according to the Charmat method, in autoclaves.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.

Bio-acidification of wines by Lachancea thermotolerans

Insufficient acidity in grapes from warm climates/vintages is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. An alternative approach involves bio-acidification with the yeast Lachancea thermotolerans (LT) via lactic acid production during fermentation.

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.