Macrowine 2021
IVES 9 IVES Conference Series 9 Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Identification of γ-nonalactone precusor in Merlot and Cabernet-Sauvignon grapes

Abstract

Wine flavor results on complexes interactions of odorous components, which come from different aromatic families like esters, thiols, aldehydes, pyrazines or lactones. Varietal lactones identified in red wines contribute to cooked fruity flavors such as dried peach, apricot, figs and dried prune. Recent studies have demonstrated the key impact of the harvest date on the lactone content in wine. The influence of the temperature during grape ripening was also underlined. Many lactones have been detected in wines, but one of them, gamma-nonalactone, possesses a low detection threshold (Dth 27 µg/L), and has been detected at high concentration in wine (up to 200 µg/L). Thus, it contributes directly to the cooked peach flavors in red wines. All these observation led us to investigate the chemical and biochemical mechanisms associated with gamma-nonalactone formation in must from Merlot and Cabernet-Sauvignon grapes, a LC-MS/MS method was developed and validated. 4-oxononanoic acid is identified for the first time in must sample whereas its concentration was ranged from some µg/L to more than 60 µg/L. Additionally, in order to demonstrate the impact of alcoholic fermentation on the formation of gamma-nonalactone, we synthesized labeled d6-4-oxononanoic acid and observed a positive correlation between d6-4-oxononanoic acid concentration added and d6-gamma-nonalactone formed in spiked samples.In conclusion, our results demonstrated the presence of 4-oxononanoic acid in must and its biotransformation to gamma-nonalactone during alcoholic fermentation of red grape varieties. We validate for the first time its role of precursor of the odorous gamma-nonalactone in wine

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Philippine De Ferron

Phd Student-Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Cécile THIBON – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA Svitlana SHINKARUK – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Philippe DARRIET – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA, Alexandre PONS – Bordeaux University – Institut des Sciences de la Vigne et du Vin – Unité de Recherche Oenologie EA-4577 – USC 1366 INRA

Contact the author

Keywords

flavors, lactones, gamma-nonalactone, precursors, 4-oxononanoic acid

Citation

Related articles…

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Impact of winemaking processes on wine polysaccharides, improving by qNMR

Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities. METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics. RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them.

Aroma composition of young and aged Lugana and Verdicchio

AIM Verdicchio and Lugana are two Italian white wines produced in the Marche and Garda lake regions respectively. They are however obtained using grape varieties sharing the same genetic background, locally known as Verdicchio in Marche and Trebbiano di Soave in Garda. Anecdotal evidence suggests that these two wine types exhibit distinctive aroma features. The aim of this work was to explore the existence of a recognizable odour profile for Lugana and Verdicchio, and whether specific aroma chemical markers could be identified. METHODS 13 commercial wines, 6 Lugana and 7 Verdicchio were used. Sensory analysis was done using sorting task methodology, assessing only odor similarities. A total of 53 volatile compounds were identified and quantified GC-MS analysis. Aging behaviors were also evaluated after an accelerated aging at 40 ° C for 3 months. RESULTS HCA analysis of sorting task data identified indeed two groups: one characterized by floral and minty notes and mostly associated with Lugana wines, the other characterized by spicy and toasted aromas and mostly associated with Verdicchio. From a chemical point of view, major differences between the two wines types were observed for cis-3-hexenol, methionol, phenylethyl alcohol, and geraniol.