Macrowine 2021
IVES 9 IVES Conference Series 9 Microwaves, an auxiliary tool to improve red wine quality in warm climates

Microwaves, an auxiliary tool to improve red wine quality in warm climates

Abstract

AIM Current winery efforts in Spanish warm climate regions, as Andalusia, are aimed at red wine production in spite of sub-optimal climatological conditions. This climate, characterized by high temperatures and sunlight, result in fast and heterogeneous ripening and, as a consequence, a lower polyphenolic concentration is detected in some grape varieties, thus leading to poor colour stability and intensity [1] compared to those achieved in colder regions. Polyphenolic compounds in red winemaking, strongly related to wine color and mouth feelings, are normally extracted in the maceration step during the fermentation process, thus phenolic content in red wines highly depends on the applied winemaking process. For this reason, several winemaking techniques have been assayed to improve color extraction allowing to obtain products with market demanding characteristics [2]. On the other hand, microwave-assisted extraction (MAE) is a technique that enhances the extraction yield of organic compounds submitted to microwaves (attributed to the dipolar rotation of molecules and heating generated in the solvent caused by this electromagnetic radiation) with low instrumental requirements [3]. The aim of this study was to assess the effect of microwaves on color characteristics of wines of Garnacha variety (Vitis vinifera L.) cultivated in a warm climate zone.

METHODS Microwave-assisted extraction was applied at the beginning of alcoholic fermentation of red wines from Garnacha grapes (grown in a warm climate zone) to enhance wine color versus conventional winemaking. Enological and color parameters were analyzed and compared along winemaking processes during vinification and bottled aging.

RESULTS Significant enhancement was found for microwave submitted wines in color intensity, CIELAB coordinates, and hue at each step of the process when compared to the control wine, including the content of different phenolic compounds. 

CONCLUSIONS: This practice seems a feasible alternative to improve quality characteristics of young red wines from grapes grown in warm climates with color difficulties.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Zulema Piñeiro 

IFAPA- o Gutiérrez-Escobar, IFAPA-  -Mª José Aliaño-González, IFAPA -Mª Isabel Fernández-Marín, IFAPA-Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain., Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain.  Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain, Centro Rancho de la Merced, Carretera Cañada de la Loba (CA-3102) PK 3.1, 11471, Jerez de la Frontera, Spain

Contact the author

Keywords

microwaves, grape, red wine, color, hue, warm climate

Citation

Related articles…

A applied viticultural zoning, based on the “secteurs de la reference” methodology, in the Cognac vineyard (France)

Dans les Charentes, en réponse à une crise de production du vignoble destiné à la production de Cognac, un plan de diversification viticole pour des vins de pays de qualité est mis en place. Il nécessite une connaissance des sols et de leurs caractéristiques viticoles pour orienter le choix des types de vins et adapter l’itinéraire technique de production.

THE EFFECT OF DIFFERENT TERROIRS ON AROMA COMPOUNDS OF ‘KALECIK KARASI’ WINES

Kalecik Karası is a domestic grape variety of Turkey, originating from Kalecik district, 80 km from Ankara. Although there is no definite evidence, it is known that it was used in wine production by many civilizations that lived in the Anatolian region, especially the Hittites. Compared to other black wine grapes, it stands out with its low tannin content, rich fruity aroma and complex structure. In good vintages, red fruits such as strawberries, cherries and raspberries stand out in the aroma profile. Although its structure is elegant, it has the potential to age and develop similar to the ‘Pinot Noir’ wine of the Burgundy region. This offers a complex aroma structure including red flowers, earth and ripe fruits.

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.

MODELLING THE AGEING POTENTIAL OF SYRAH RED WINES BY ACCELERATED AGEING TESTS: INFLUENCE OF ANTIOXIDANT ASSAYS AND PHENOLIC COMPOSITION

Red wine ageing is an important step in the red wine evolution and impacts its chemical and sensory characteristics through many chemicals and physico-chemical reactions. The kinetics of these evolutions depend on the wine studied and influence the wine ageing potential. Generally, high quality red wines require a longer period of bottle ageing before consumption¹. The ageing potential is an impor-tant parameter for wine quality and is related to the capacity of a wine to undergo oxidation over time². Phenolic compounds which are ones of the main substrates for oxidation can then potentially modulate ageing potential³.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.