WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Advances in the chemistry of rosé winemaking and ageing

Advances in the chemistry of rosé winemaking and ageing

Abstract

The market share of Rosé wine in France has grown from 11 % to 32 % over the last 20 years. Current trends are towards rosé wines of a lighter shade of pink, and where possible, containing a greater concentration in varietal thiols. Grape varieties, the soil on which they are grown, viticultural practices and winemaking technology all impact the polyphenols, color and aromas of rosé wines. To investigate the terroir effect, a study on the influence of origin of rosé wine was  performed using semi-targeted polyphenomics. 60 commercial wines from Bordeaux, Languedoc and Provence regions were used as two independent sample and data sets (30 wines each). An original LC-QTOF-MS method and a specific data analysis genetic algorithm gave good discrimination of the wines based on their origin of production [1].

Apart from the origin or terroir of the grapes, winemaking technology plays a crucial role in determining the color and aroma profile of rosé wine, including the widespread use of polyvinylpolypyrrolidone (PVPP) to adjust the color and polyphenol content. The specific adsorption of coumaroylated anthocyanins was greater than that of other anthocyanins [2], and a molecular modelling approach was used to further understand this specific binding affinity. We showed that using PVPP, the thiol aroma content of rosé wine can be increased up to 200 % as compared to the control wines [3]. This might explain the increase in demand for lighter colored rosé wines over the last number of years.

When the desired color and aroma are obtained, a remaining challenge is to understand and predict the sensitivity of rosé wines to oxidation. Accelerated ageing tests based on heat and chemical oxidation are currently under investigation in our laboratory. These tests and mass spectrometry show that the anthocyanins are appropriate biomarkers of chemical ageing in rosé wines.

References

[1] Gil, M., Reynes, C., Cazals, G., Enjalbal, C., Sabatier, R., & Saucier, C. . Scientific reports. 2020, 10(1), 1-7
[2] Gil, M.,  Avila-Salas, F., Santos, L.S.,  Iturmendi, N., Moine, V ., Cheynier, V., Saucier C.  J. Agric.  Food Chem. 2017 65, 10591-10597
[3] Gil, M.,  Louazil,P., Iturmendi, N., Moine, V ., Cheynier, V., Saucier C. Food Chem. 2019, 295, 493-498

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

SAUCIER,  Melodie, Gil, Fabian, Avila, Philippe, Louazil, Guillaume, Cazals, Christine Enjalbal, Arnaud, Massot, Leonardo, Santos, Robert, Sabatier, Virginie, Moine

Presenting author

SAUCIER, Cédric 

SPO, Université de Montpellier, France | Laboratory of Asymmetric Synthesis, Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile | Biolaffort,  Floirac, France | IBMM,University de  Montpellier, France | Biolaffort,  Floirac, France | IGF, University de Montpellier, France | Biolaffort,  Floirac, France

Contact the author

Keywords

Rosé wine, color, polyphenol, PVPP, thiol, oxidation

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Non-destructive his based analysis for shelf-life evaluation of table grape 

Fast, accurate, and non-destructive analytical techniques based on hyperspectral imaging (hsi) represent effective tools for food quality evaluation. A visible change in the appearance of a fresh product often negatively impacts the perceived quality from a consumer’s point of view.

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).