Macrowine 2021
IVES 9 IVES Conference Series 9 Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

Abstract

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts.

METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts. Identity of the high pressure resistant (HPR) mutants was verified by analysis of cell morphology, killer phenotype, cyhR marker, presence of viral dsRNA, RFLPs of mtDNA, and sequencing of Internal Transcribed Spacer ofribosomal DNA (ITS).

RESULTS: T. Delbrueckii mutants were isolated from some spore clones. Papillae resistant to SO2 were isolated. Subsequently, new spontaneous mutants capable of growing on YEPD plates with 10% ethanol were isolated. Rosé sparkling wine (cava) was made using these mutants. Two mutants, with the best fermentation kinetics and closest to the reference yeast Sc 85R4, were isolated from some bottles with high CO2 pressure and some were selected there after (Td MutHP41 and Td MutHP42). They had better fermentation kinetics and dominance than their parental yeast. Td MutHP41 showed great improvement for industrial base wine fermentation with respect to its parental yeast. Re-isolation and selection procedure to obtain new reinforced HPR mutants from previously selected HPR mutants was not a sound strategy to continue improving the fermentative capability of T. delbrueckii under high CO2 pressure. Continuous shaking during inocula preparation further improved the fermentative capability of T. delbrueckii yeasts.

CONCLUSIONS: Isolation of spontaneous mutants resistant to SO2 and ethanol seems to be a good strategy to slightly improve the fermentative efficiency of T. delbrueckii in must and base wine. The new mutants were genetically stable enough to be considered for industrial production, and their fermentative capability was further improved by continuously supplying oxygen during the conditioning stage before yeast culture inoculation in base wine.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto Martínez Brígido 1, Rocío Velázquez 1, Joaquín Bautista-Gallego 1, Emiliano Zamora 2, Manuel Ramírez 1

1 Departamento de Ciencias Biomédicas, Universidad de Extremadura, 06006 Badajoz, Spain.
2 Estación Enológica, Junta de Extremadura. 

Contact the author

Keywords

Torulaspora delbrueckii; wine fermentation, sporeclone; sparkling wine; ethanol resistance; SO2 resistance; pressure resistance

Citation

Related articles…

ACCUMULATION OF GRAPE METABOLITES IS DIFFERENTLY IMPACTED BY WATER DEFICIT AT THE BERRY AND PLANT LEVELS IN NEW FUNGUS DISEASE-TOLERANT GENOTYPES

The use of new fungus disease-tolerant varieties is a promising long-term solution to better manage chemical input in viticulture, but unfortunately little is known regarding these new hybrids fruit development and metabolites accumulation in front of abiotic stresses such as water deficit (WD). Thus, prior to the adoption of such varieties by the wine industry in Mediterranean regions, there is a need to consider their suitability to WD.

Optimisation de la fertilisation du Cot sur le Causse de l’Appellation d’Origine Contrôlée Cahors

The Appellation d’Origine Contrôlée area of ​​Cahors (Lot) covers an area of ​​21,700 ha, spread over 45 municipalities, of which only 4,300 are planted with vines. The main grape variety of this AOC is the Cot noir which represents 70% of the grape varieties, thus giving their typicality to the wines of this region; but despite this importance, to our knowledge, its physiology has remained relatively unstudied.

The effects of cover cropping systems on vine physiology, berry and wine quality in a climate change scenario in Switzerland

Sustainable weed control with little detrimental effects on vine physiology, yield, berry quality, soil structure, health and biodiversity is a key factor in vineyard management. Few options are available to avoid herbicide utilization and minimize negative effects of frequent tillage on soil quality. The present project aims to investigate and develop different cover management strategies in a cool climate viticultural region in Switzerland. The impact of different treatments on vine, must and wine has been studied in an experimental vineyard in Changins, Switzerland for one year and will be continued over the next three years.

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”