Macrowine 2021
IVES 9 IVES Conference Series 9 Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

Abstract

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts.

METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts. Identity of the high pressure resistant (HPR) mutants was verified by analysis of cell morphology, killer phenotype, cyhR marker, presence of viral dsRNA, RFLPs of mtDNA, and sequencing of Internal Transcribed Spacer ofribosomal DNA (ITS).

RESULTS: T. Delbrueckii mutants were isolated from some spore clones. Papillae resistant to SO2 were isolated. Subsequently, new spontaneous mutants capable of growing on YEPD plates with 10% ethanol were isolated. Rosé sparkling wine (cava) was made using these mutants. Two mutants, with the best fermentation kinetics and closest to the reference yeast Sc 85R4, were isolated from some bottles with high CO2 pressure and some were selected there after (Td MutHP41 and Td MutHP42). They had better fermentation kinetics and dominance than their parental yeast. Td MutHP41 showed great improvement for industrial base wine fermentation with respect to its parental yeast. Re-isolation and selection procedure to obtain new reinforced HPR mutants from previously selected HPR mutants was not a sound strategy to continue improving the fermentative capability of T. delbrueckii under high CO2 pressure. Continuous shaking during inocula preparation further improved the fermentative capability of T. delbrueckii yeasts.

CONCLUSIONS: Isolation of spontaneous mutants resistant to SO2 and ethanol seems to be a good strategy to slightly improve the fermentative efficiency of T. delbrueckii in must and base wine. The new mutants were genetically stable enough to be considered for industrial production, and their fermentative capability was further improved by continuously supplying oxygen during the conditioning stage before yeast culture inoculation in base wine.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto Martínez Brígido 1, Rocío Velázquez 1, Joaquín Bautista-Gallego 1, Emiliano Zamora 2, Manuel Ramírez 1

1 Departamento de Ciencias Biomédicas, Universidad de Extremadura, 06006 Badajoz, Spain.
2 Estación Enológica, Junta de Extremadura. 

Contact the author

Keywords

Torulaspora delbrueckii; wine fermentation, sporeclone; sparkling wine; ethanol resistance; SO2 resistance; pressure resistance

Citation

Related articles…

Impact of oenological tannins on microvinifications affected by downy mildew

AIM: Vine diseases are still responsible for economic losses. Previous study in our laboratory, have shown effects of oenological tannins against Botrytis cinerea1,2. According to this, the aim was to evaluate the wine protection by oenological tannins against an another disease, the downy mildew. METHODS: During the 2020 vintage, infected grapes by downy mildew (Vitis vinifera cv. Merlot) were collected from the dispositive ResIntBio. The 100 kg were crushed, destemmed and dispatch into 10 aluminium tanks. SO2 was added at 3 g/hL. Oenological tannins (grape, quebracho, ellagitannin or gallotannin) were added at 100 g/hL into eight different tanks (4×2 tanks). The two last tanks were considered as control without addition of oenological tannins. Alcoholic fermentation was achieved with Actiflore 33® at 20 g/hL. Malolactic fermentation was achieved with Lactoenos B7at 1 g/hL. Finished wines were sulfited to obtain 45 mg/L of total SO2.

Influence of planting stock and training strategy on the development and productivity of Pinot noir grapevines

For cool windy climates and/or lower vigor site situations delays in vine development during vine establishment can result in a greater number of growing seasons to achieve full yield potential. Plant material and training strategies utilized are critical factors in promoting vine development and production that is appropriate to the site conditions. The objective of this study was to evaluate nursery planting stock and training strategies for their potential to achieved advanced vine development and yield.

Modelling grape and wine quality through PLS Spline statistical method

Started in 1994, this project intends to explain quality of grapes and wines using data of soil, climate and vineyard that are currently used in field trials.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.