Macrowine 2021
IVES 9 IVES Conference Series 9 Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

Abstract

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts.

METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts. Identity of the high pressure resistant (HPR) mutants was verified by analysis of cell morphology, killer phenotype, cyhR marker, presence of viral dsRNA, RFLPs of mtDNA, and sequencing of Internal Transcribed Spacer ofribosomal DNA (ITS).

RESULTS: T. Delbrueckii mutants were isolated from some spore clones. Papillae resistant to SO2 were isolated. Subsequently, new spontaneous mutants capable of growing on YEPD plates with 10% ethanol were isolated. Rosé sparkling wine (cava) was made using these mutants. Two mutants, with the best fermentation kinetics and closest to the reference yeast Sc 85R4, were isolated from some bottles with high CO2 pressure and some were selected there after (Td MutHP41 and Td MutHP42). They had better fermentation kinetics and dominance than their parental yeast. Td MutHP41 showed great improvement for industrial base wine fermentation with respect to its parental yeast. Re-isolation and selection procedure to obtain new reinforced HPR mutants from previously selected HPR mutants was not a sound strategy to continue improving the fermentative capability of T. delbrueckii under high CO2 pressure. Continuous shaking during inocula preparation further improved the fermentative capability of T. delbrueckii yeasts.

CONCLUSIONS: Isolation of spontaneous mutants resistant to SO2 and ethanol seems to be a good strategy to slightly improve the fermentative efficiency of T. delbrueckii in must and base wine. The new mutants were genetically stable enough to be considered for industrial production, and their fermentative capability was further improved by continuously supplying oxygen during the conditioning stage before yeast culture inoculation in base wine.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alberto Martínez Brígido 1, Rocío Velázquez 1, Joaquín Bautista-Gallego 1, Emiliano Zamora 2, Manuel Ramírez 1

1 Departamento de Ciencias Biomédicas, Universidad de Extremadura, 06006 Badajoz, Spain.
2 Estación Enológica, Junta de Extremadura. 

Contact the author

Keywords

Torulaspora delbrueckii; wine fermentation, sporeclone; sparkling wine; ethanol resistance; SO2 resistance; pressure resistance

Citation

Related articles…

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

Grape overripening as an innovation strategy in response to climate change

Today’s viticulture is facing a new climatic scenario with temperature increases and rainfall deficits, generated by the effect of climate change. As a result of these new conditions, there are earlier harvests, increased plant water stress and higher disease risk in wetter wine-growing regions.

Lean management to improve sustainability in wine sector: an exploratory study in the Prosecco DOC appellation

The contemporary wine sector confronts a formidable array of challenges, including burgeoning production costs and the constricted availability of natural resources. Heightened consumer awareness regarding sustainability issues further compounds these pressures, compelling companies to adopt more judicious resource utilization strategies. In response to these imperatives, there is a growing recognition of the need to overhaul production methodologies within the wine industry with a view to minimizing inputs and eliminating waste.

Protected Designation of Origin (D.P.O.) Valdepeñas: classification and map of soils

The objective of the work described here is the elaboration of a map of the different types of vineyard soils that to guide the famers in the choice of the most productive vine rootstocks and varieties. 90 vineyard soils profiles were analysed in the entire territory of the Origen Denominations of Valdepeñas. The sampling was carried out in 2018 (June to October) by making a sampling grid, followed by photointerpretation and control in the field. The studied soils can be grouped into 9 different soil types (according to FAO 2006 classification): Leptosols, Regosols, Fluvisols, Gleysols, Cambisols, Calcisols, Luvisols and Anthrosols. A map showing the soil distribution with different type of soils has been made with the ArcGIS program. Regarding to the choice of rootstock, Calcisoles are soils with a high active limestone content, so the rootstocks used in these soils must be resistant to this parameter; Luvisols are deep soils with high clay content, so they will support vigorous rootstocks. Because the cartographic units are composed of two or more subgroups, with are associated in variable proportions, 9 different soil associations have been established; Unit 1: Leptosols, Cambisols and Luvisols (80%, 15% and 5% respectively); Unit 2: Cambisols with Regosols and Luvisols (40%, 30% and 30% respectively); Unit 3: Cambisols and Gleysols with Regosols (40%, 40% and 20% respectively); Unit 4: Regosols with Cambisols, Leptosols and Calcisols (40%, 30%, 15% and 15% respectively); Unit 5: Cambisols, Leptosols, Calcisols and Regosols (25% each of them); Unit 6: Luvisols with Cambisol and Calcisols (80%, 10% and 10% respectively); Unit 7: Luvisols and Calcisols with Cambisols (40%, 40% and 20% respectively); Unit 8: Calcisols with, Cambisols and Luvisols (80%, 10% and 10% respectively); Unit 9: Anthrosols. These study allow to elaborate the first map of vineyard soils of this Protected Designation of Origin in Castilla-La Mancha.