Macrowine 2021
IVES 9 IVES Conference Series 9 Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Abstract

AIM: Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems may have a high concentration of IBMP. The study aimed to discover the extent to which whole bunch addition during fermentation contributes to ‘capsicum’ (green) flavour and aroma in wine by imparting IBMP. It was also of interest to determine whether additional tannin could be extracted from stem contact, which was expected to impact wine astringency.  

METHODS: Pinot noir and Shiraz grapes were either fermented either completely crushed, or as 100% whole bunches. Other treatments had proportional whole bunch addition at 25%, 50% or 75%. Wines were put through descriptive sensory analysis after 10 months and multiple volatile and non-volatile compounds were analysed at the same time.  

RESULTS:  For both varieties, the sensory scores for ‘green capsicum’ and the concentration of IBMP were highly correlated with the proportion of whole bunches in the ferment. Volatile compounds other than IBMP were increased by whole bunch fermentations, and were α-terpineol, β-citronellol and E-2-hexenol. For Shiraz, the wood-derived volatiles guaiacol and vanillin increased with whole-bunch inclusion, while for Pinot noir ethyl cinnamate increased, possibly reflecting that some carbonic maceration occurred. In Shiraz wines, the concentration of tannin and the perception of astringency increased with the inclusion of whole bunches, but this was not observed for Pinot noir. Whole-bunch ferments from both grape varieties had lower levels of polysaccharide in the finished wine, primarily due to a lower contribution of pectic material.     

CONCLUSIONS: This study showed that winemakers can substantially alter wine volatile and non-volatile composition through whole bunch fermentation. The results will be discussed in terms of potential wine style outcomes for the respective grape varieties, whether whole bunch inclusion might improve the complexity of a wine, or simply introduce unwanted ‘green capsicum’ attributes.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Keren Bindon (1), Martin Day (1), Dimitra Capone (2), Stella Kassara (1), Eleanor Bilogrevic (1), Damian Espinase-Nandorfy (1), Flynn Watson (1), Leigh Francis (1)

(1) The Australian Wine Research Institute, Research, Adelaide, Australia
(2) Arc Training Centre For Innovative Wine Production, The University Of Adelaide, Adelaide, Australia

Contact the author

Citation

Related articles…

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Evolution of cabernet sauvignon wines macerated with their own toasted vine-shoots

Toasted pruning vine-shoots represent a promising new enological tool for developing wines with chemical and organoleptic high quality, allowing that the resources of the vineyard to be returned to the wine through a “circular process”.

Agroclimatic characterization of Monreale DOC appellation for vine growing

This paper presents the results of an agroclimatic study of the viticulture area called DOC Monreale (Pa), Italy, which was carried out with the aim to supply a working instrument supporting viticulture planning.

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1].

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change