Macrowine 2021
IVES 9 IVES Conference Series 9 Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Whole bunch fermentation: adding complexity, or just making ‘green’ wine?

Abstract

AIM: Certain grape varieties contain negligible levels of isobutyl methoxypyrazine (IBMP) in grapes. However, it has long been known that grape stems may have a high concentration of IBMP. The study aimed to discover the extent to which whole bunch addition during fermentation contributes to ‘capsicum’ (green) flavour and aroma in wine by imparting IBMP. It was also of interest to determine whether additional tannin could be extracted from stem contact, which was expected to impact wine astringency.  

METHODS: Pinot noir and Shiraz grapes were either fermented either completely crushed, or as 100% whole bunches. Other treatments had proportional whole bunch addition at 25%, 50% or 75%. Wines were put through descriptive sensory analysis after 10 months and multiple volatile and non-volatile compounds were analysed at the same time.  

RESULTS:  For both varieties, the sensory scores for ‘green capsicum’ and the concentration of IBMP were highly correlated with the proportion of whole bunches in the ferment. Volatile compounds other than IBMP were increased by whole bunch fermentations, and were α-terpineol, β-citronellol and E-2-hexenol. For Shiraz, the wood-derived volatiles guaiacol and vanillin increased with whole-bunch inclusion, while for Pinot noir ethyl cinnamate increased, possibly reflecting that some carbonic maceration occurred. In Shiraz wines, the concentration of tannin and the perception of astringency increased with the inclusion of whole bunches, but this was not observed for Pinot noir. Whole-bunch ferments from both grape varieties had lower levels of polysaccharide in the finished wine, primarily due to a lower contribution of pectic material.     

CONCLUSIONS: This study showed that winemakers can substantially alter wine volatile and non-volatile composition through whole bunch fermentation. The results will be discussed in terms of potential wine style outcomes for the respective grape varieties, whether whole bunch inclusion might improve the complexity of a wine, or simply introduce unwanted ‘green capsicum’ attributes.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Keren Bindon (1), Martin Day (1), Dimitra Capone (2), Stella Kassara (1), Eleanor Bilogrevic (1), Damian Espinase-Nandorfy (1), Flynn Watson (1), Leigh Francis (1)

(1) The Australian Wine Research Institute, Research, Adelaide, Australia
(2) Arc Training Centre For Innovative Wine Production, The University Of Adelaide, Adelaide, Australia

Contact the author

Citation

Related articles…

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Application of grape pomace and stem extracts on Vitis vinifera L. cv. Monastrell: Increased stilbene content of grapes and wines

Pomace and grape stems are the main solid organic waste from winery industries, resulting from the pressing and/or fermentation processes it is generated in large amounts in many parts of the world

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

Impact of non-Saccharomyces in malolactic fermentation of white and red winemaking

Nowadays the use of non-Saccharomyces as starters of alcoholic fermentation (AF) has increased because of the modulation of the organoleptic profile of wines

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.