Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Abstract

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times and the numerous resulting reaction products. There is a need for global and rapid in vitro tests to predict wine oxidation kinetics. First, three different forced oxidation protocols were developed on a “young” (2018) red wine to follow the consumption of oxygen. After oxygen saturation of the wines at 22°C, the red wines were oxidized following 3 different protocols

1 – heat at 60°C

2 –laccase oxidation at 22°C

3 –hydrogen peroxide oxidation at 22°C

The oxygen consumption kinetics were followed by oxo-luminescence oxygen measurements. The oxygen consumption all followed a first order kinetic on the 2018 wine but had different kinetics constants depending on the oxidation protocol. High resolution UPLC-MS was also performed on forced oxidation samples and compared to natural oxidation samples of naturally aged red wines (2014 and 2010 vintages). Specific polyphenols (anthocyanins, flavanols and their derivatives) were impacted in both naturally or artificially aged wines and differed depending on the oxidation protocol. For example, the intensity of some low molecular weight polyphenols increased both in naturally or artificially heated aged wines ([M+H]+= 287; 289; 291; 303; 317; 319). However, some differences were observed between natural and artificial aging for higher molecular weight polyphenols ([M+H]+= 493; 535; 639)

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stacy Deshaies

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.,Guillaume CAZALS: IBMM, Univ Montpellier, Montpellier, France  Christine ENJALBAL: IBMM, Univ Montpellier, Montpellier, France  François GARCIA :SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Laetitia MOULS: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Cédric SAUCIER: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

wine; oxidation; polyphenol; syrah; mass spectrometry; oxygen; vintage; markers

Citation

Related articles…

Effect of the addition of peptidic hydrolysates from grape pomace by-products to red wines in warm regions

High temperatures typical of warm climates cause the colour of red wines to become increasingly unstable over time.

Effect of ultraviolet B radiation on pathogenic molds of grapes

The fungicidal effect of UV-C radiation (100-280 nm wavelength) is well known, but its applicability for the control of pathogenic molds of grapes is conditioned by its effect on the host and by the risks inherent in its handling[1].
As an alternative, the effect in vitro of UV-B radiation (280-315 nm) on the main pathogenic molds of grapes has been studied: Botrytis cinerea, Aspergillus niger, Penicillium expansum and Rhizopus stolonifer.

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

Système de Classification Climatique Multicritères (CCM) Géoviticole

Le travail concerne en premier la méthodologie de caractérisation du climat des vignobles, à l’échelle du macroclimat des régions viticoles du monde (géoviticulture). Trois indices climatiques viticoles synthétiques

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment.