Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Abstract

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times and the numerous resulting reaction products. There is a need for global and rapid in vitro tests to predict wine oxidation kinetics. First, three different forced oxidation protocols were developed on a “young” (2018) red wine to follow the consumption of oxygen. After oxygen saturation of the wines at 22°C, the red wines were oxidized following 3 different protocols

1 – heat at 60°C

2 –laccase oxidation at 22°C

3 –hydrogen peroxide oxidation at 22°C

The oxygen consumption kinetics were followed by oxo-luminescence oxygen measurements. The oxygen consumption all followed a first order kinetic on the 2018 wine but had different kinetics constants depending on the oxidation protocol. High resolution UPLC-MS was also performed on forced oxidation samples and compared to natural oxidation samples of naturally aged red wines (2014 and 2010 vintages). Specific polyphenols (anthocyanins, flavanols and their derivatives) were impacted in both naturally or artificially aged wines and differed depending on the oxidation protocol. For example, the intensity of some low molecular weight polyphenols increased both in naturally or artificially heated aged wines ([M+H]+= 287; 289; 291; 303; 317; 319). However, some differences were observed between natural and artificial aging for higher molecular weight polyphenols ([M+H]+= 493; 535; 639)

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stacy Deshaies

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.,Guillaume CAZALS: IBMM, Univ Montpellier, Montpellier, France  Christine ENJALBAL: IBMM, Univ Montpellier, Montpellier, France  François GARCIA :SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Laetitia MOULS: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Cédric SAUCIER: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

wine; oxidation; polyphenol; syrah; mass spectrometry; oxygen; vintage; markers

Citation

Related articles…

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Modélisation du régime thermique des sols de vignoble du Val de Loire : relations avec des variables utilisables pour la caractérisation des terroirs

Temperature has a decisive influence on the growth and development of plants (Carbonneau et al., 1992). In particular, in the case of the vine, the temperature is an omnipresent variable in the climatic indices (Huglin, 1986). For reasons of convenience, these indices use the temperature of the air measured under shelter in a meteorological station, making the implicit hypothesis of a concordance between this temperature and that of the sites of perception of the thermal stimulus by the plant. However, development may be more dependent on soil temperature than air temperature (Kliewer, 1975). Morlat (1989) thus verified that the variability in the precocity of the vine, positively correlated with the quality of the harvest and of the wine in the Loire Valley, was mainly explained by differences in temperature of the root zones.

Comparison of integrated, organic and biodynamic viticultural practices

In this video recording of the IVES science meeting 2021, Johanna Döring (Hochschule Geisenheim University Department of General and Organic Viticulture, Geisenheim, Germany) speaks about the comparison of integrated, organic and biodynamic viticultural practices. This presentation is based on an original article accessible for free on OENO One.

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains.

Climatic zoning of the Ibero-American viticultural regions

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”.