Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Abstract

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times and the numerous resulting reaction products. There is a need for global and rapid in vitro tests to predict wine oxidation kinetics. First, three different forced oxidation protocols were developed on a “young” (2018) red wine to follow the consumption of oxygen. After oxygen saturation of the wines at 22°C, the red wines were oxidized following 3 different protocols

1 – heat at 60°C

2 –laccase oxidation at 22°C

3 –hydrogen peroxide oxidation at 22°C

The oxygen consumption kinetics were followed by oxo-luminescence oxygen measurements. The oxygen consumption all followed a first order kinetic on the 2018 wine but had different kinetics constants depending on the oxidation protocol. High resolution UPLC-MS was also performed on forced oxidation samples and compared to natural oxidation samples of naturally aged red wines (2014 and 2010 vintages). Specific polyphenols (anthocyanins, flavanols and their derivatives) were impacted in both naturally or artificially aged wines and differed depending on the oxidation protocol. For example, the intensity of some low molecular weight polyphenols increased both in naturally or artificially heated aged wines ([M+H]+= 287; 289; 291; 303; 317; 319). However, some differences were observed between natural and artificial aging for higher molecular weight polyphenols ([M+H]+= 493; 535; 639)

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stacy Deshaies

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.,Guillaume CAZALS: IBMM, Univ Montpellier, Montpellier, France  Christine ENJALBAL: IBMM, Univ Montpellier, Montpellier, France  François GARCIA :SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Laetitia MOULS: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Cédric SAUCIER: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

wine; oxidation; polyphenol; syrah; mass spectrometry; oxygen; vintage; markers

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown grafted in most of the world largely because of Phylloxera. Rootstocks not only provide tolerance to Phylloxera, but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important means of adaptation to environmental conditions if we want to conserve the typical features of the currently used scion genotypes. To aid this adaptation, we can exploit the large diversity of rootstocks used worldwide. To fully explore this existing rootstock diversity, this work benefits from the unique GreffAdapt vineyard, in which four scion genotypes were studied onto 55 commercial rootstocks in three blocks. The aim of this study was to characterise rootstock regulation of scion mineral status and how it relates to scion development.

Modulation of berry composition by different vineyard management practices

High concentration of sugars in grapes and alcohol in wines is one of the consequences of climate change on viticulture production in several wine-growing regions. In order to investigate the possibilities of adaptation of vineyard management practices aimed to reduce the accumulation of sugar during the maturation phase without reducing the accumulation of anthocyanins in grapes, a study with severe shoot trimming, shoot thinning, cluster thinning and date of harvest was conducted on Merlot variety in Istria region (Croatia), under the Mediterranean climate. Four factors which may affect grape maturation and its composition at harvest were investigated in a two-years experiment; severe shoot trimming applied at veraison when >80% of berries changed colour (in comparison to untreated control), shoot thinning (0 and 30%), cluster thinning (0 and 30%), and the date of harvest (early and standard harvest dates). Shoot thinning had no significant impact on berry composition, despite the obtained reduction in yield per vine. Lower Brix in grapes were obtained with earlier harvest date and if no cluster thinning was applied, although at the same time a reduction in the concentration of anthocyanins in berries was observed in these treatments. On the other hand, if severe shoot trimming was applied when >80% of berries changed colour, a reduction of Brix was obtained without a negative impact on berry anthocyanins concentration. We conclude that in cases when undesirably high sugar concentrations at harvest are expected, severe shoot trimming at 80% veraison may effectively be used in order to obtain moderate sugar concentration in berries together with the adequate phenolic composition.

Il ruolo dei comuni nella gestione del territorio e nella tutela dei vitigni autoctoni di qualita’

Questo simposio organizzato dall ‘Associazione nazionale Città del Vino, che mi onoro di presiedere, è per me motivo di particolare soddisfazione perché porta a compimento parte di un percorso iniziato dall’associazione da alcuni anni e che ha un obiettivo apparentemente semplice: sollecitare gli amministratori delle Città del Vino a perseguire con tenacia, tal­volta anche con la necessaria caparbietà, programmi ed interventi che abbiano al centro, sempre, la qualità della vita dei loro territori.

Rootstock effects on cv. Ugni blanc berry and wine composition

In the Cognac region in France, Ugni blanc is the most planted grape variety (98% of the 80 500 ha). This vine region is in expansion due to the success of the associated well-known brandy and the need of high grape yield to guarrantee the production of base wine for distillation. About 2 to 3000 ha are newly planted each year and rootstocks are one powerfull tool for vineyard adaptation to soil or climate change. As rootstocks ensure water and mineral nutrient supplies to the scion, it is important to better understand their effect on berry compostionnal parameters such as sugars and nitrogen compounds, which are the main precursors for fermentary aroma metabolites, the latter being quality markers for Cognac after distillation.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.