Macrowine 2021
IVES 9 IVES Conference Series 9 Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Red wine oxidation: oxygen consumption kinetics and high resolution uplc-ms analysis

Abstract

Oxygen is playing a major role in wine ageing and conservation. Many chemical oxidation reactions occur but they are difficult to follow due to their slow reaction times and the numerous resulting reaction products. There is a need for global and rapid in vitro tests to predict wine oxidation kinetics. First, three different forced oxidation protocols were developed on a “young” (2018) red wine to follow the consumption of oxygen. After oxygen saturation of the wines at 22°C, the red wines were oxidized following 3 different protocols

1 – heat at 60°C

2 –laccase oxidation at 22°C

3 –hydrogen peroxide oxidation at 22°C

The oxygen consumption kinetics were followed by oxo-luminescence oxygen measurements. The oxygen consumption all followed a first order kinetic on the 2018 wine but had different kinetics constants depending on the oxidation protocol. High resolution UPLC-MS was also performed on forced oxidation samples and compared to natural oxidation samples of naturally aged red wines (2014 and 2010 vintages). Specific polyphenols (anthocyanins, flavanols and their derivatives) were impacted in both naturally or artificially aged wines and differed depending on the oxidation protocol. For example, the intensity of some low molecular weight polyphenols increased both in naturally or artificially heated aged wines ([M+H]+= 287; 289; 291; 303; 317; 319). However, some differences were observed between natural and artificial aging for higher molecular weight polyphenols ([M+H]+= 493; 535; 639)

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Stacy Deshaies

SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.,Guillaume CAZALS: IBMM, Univ Montpellier, Montpellier, France  Christine ENJALBAL: IBMM, Univ Montpellier, Montpellier, France  François GARCIA :SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Laetitia MOULS: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France. Cédric SAUCIER: SPO, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France.

Contact the author

Keywords

wine; oxidation; polyphenol; syrah; mass spectrometry; oxygen; vintage; markers

Citation

Related articles…

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Evaluation of two transmittance meters in estimating chlorophyll and nitrogen concentrations in grapevine cultivars

Two transmittance-based chlorophyll meters (SPAD-502 and CCM-200) were evaluated in estimating chlorophyll (Chl) and nitrogen (N) levels in grapevine leaves.

Présentation d’une méthodologie de caractérisation des terroirs et valorisation par l’étude de l’effet terroir sur la typicité et l’originalité du produit vin dans la région des Côtes du Rhône

In the global economic context, an Appellation d’Origine Contrôlée must now more than ever control the typicity and originality of the wines it produces. It is in this spirit that the Côtes du Rhône have decided to acquire the means necessary for this control.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Assessment of environmental sustainability of wine growing activity in France

To meet the demand of assessment tool of vine growers and their advisers we adapted to the vine production the INDIGO® method to developed initially for arable farming.