Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Abstract

Sulfur-like off-odours are a problem caused by the presence of free forms of volatile sulphur compounds (VSCs). H2S is the most frequently found above its odour threshold (1-10 µg/L), followed by methanethiol (MeSH). Recent evidences showed that the usual treatments to eliminate VSCs from wine e.g.: addition of Cu salts or micro-oxygenation only delay the occurrence of reductive off-odours. (Vela et al., 2017, 2018) The present work aims to assess the effectiveness of three alternative remediation strategies on the removal of VSCs:

1.- intensive oxygenation in the presence of a 3-mercaptopropyl-functionalized adsorbent (MPS);

2.- purging out with N2 the wine stored in reductive conditions; and,

3.- incubation with lees. The treatment with MPS consisted in the addition of 1 mM (of -SH groups) of the functionalized adsorbent to two different wines.

They were further saturated with air and, after three days, were centrifuged and analysed. The purge with N2 was applied to two different wines, which had been previously stored during 2 weeks at 50ºC under anoxia. They were purged at 100 mL/min during 60 min and analysed after the treatment. For lees treatment, three different types of lees were studied: fresh active lees, fresh inactive lees and commercial inactivated dry yeast. They were added (3,3 g/L) to wines with reductive off-odour, then they were incubated for 16 weeks at 25ºC, with weekly agitation. After the incubation, the wines were centrifugated to remove the lees. VSCs and redox potential of wines were analysed by GC-SCD (Ontañón et al., 2019) before and after each essay. Additionally, after the treatments an accelerated reductive aging was carried out (incubation at 50ºC under anoxia for 2 weeks) to assess the long-term effect of the treatments. Intensive oxygenation was very effective (-85% H2S BR after treatment and accelerated aging in both cases). Purge treatment was effective only in the short time, removing completely free H2S free and -70% BR-H2S. However, it was not effective in the long-term. The use of inactivated dry yeast was ineffective. The use of active or inactive fresh lees was effective only in some cases. In conclusion, oxidation with MPS provides the most effective treatment; purging was effective only in the short-term; and treatments with lees were not conclusive. Further studies to assess side effects of oxidation with MPS on wine characteristics should be carried out.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Sánchez-Gimeno

Diego Sánchez-Gimeno, Laboratory  of Aroma Analsis and Oenology (LAAE), Instituto Agroalimentario de Aragón –IA2-; Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, 50009. Zaragoza, Spain,Ignacio Ontañon, LAAE, –IA2- Universidad de Zaragoza Vicente Ferreira, LAAE, –IA2- Universidad de Zaragoza

Contact the author

Keywords

reduction, off-odours, vscs, lees, purge

Citation

Related articles…

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

A blueprint for managing vine physiological balance at different spatial and temporal scales in Champagne

In Champagne, the vine adaptation to different climatic and technical changes during these last 20 years can be seen through physiological balance disruptions. These disruptions emphasize the general grapevine decline. Since the 2000s, among other nitrogen stress indicators, the must nitrogen has been decreasing. The combination of restricted mineral fertilizers and herbicide use, the growing variability of spring rainfall, the increasing thermal stress as well as the soil type heterogeneity are only a few underlying factors that trigger loss of physiological balance in the vineyards. It is important to weigh and quantify the impact of these factors on the vine. In order to do so, the Comité Champagne uses two key-tools: networking and modelization. The use of quantitative and harmonized ecophysiological indicators is necessary, especially in large spatial scales such as the Champagne appellation. A working group with different professional structures of Champagne has been launched by the Comité Champagne in order to create a common ecophysiology protocol and thus monitor the vine physiology, yearly, around 100 plots, with various cultural practices and types of soil. The use of crop modelling to follow the vine physiological balance within different pedoclimatic conditions enables to understand the present balance but also predict the possible disruptions to come in future climatic scenarios. The physiological references created each year through the working group, benefit the calibration of the STICS model used in Champagne. In return, the model delivers ecophysiology indicators, on a daily scale and can be used on very different types of soils. This study will present the bottom-up method used to give accurate information on the impacts of soil, climate and cultural practices on vine physiology.

Postharvest ozone treatment in grapevine white cultivars: Effects on grape volatile composition

During postharvest management, the metabolism of fruits remains active and continuous physico-chemical changes occur. Ozone treatment has an elicitor effect on secondary metabolites and the treatment conditions can influence the grape response to the stress (Bellincontro et al., 2017; Botondi et al., 2015). Regarding volatile organic compounds (VOCs), previous studies showed that ozone treatment during postharvest dehydration induces the biosynthesis of terpenes in Moscato bianco grapes (Río Segade et al., 2017). It is well known that grape VOCs greatly influence the organoleptic properties of wines, particularly terpenes in aromatic varieties.