Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Abstract

Sulfur-like off-odours are a problem caused by the presence of free forms of volatile sulphur compounds (VSCs). H2S is the most frequently found above its odour threshold (1-10 µg/L), followed by methanethiol (MeSH). Recent evidences showed that the usual treatments to eliminate VSCs from wine e.g.: addition of Cu salts or micro-oxygenation only delay the occurrence of reductive off-odours. (Vela et al., 2017, 2018) The present work aims to assess the effectiveness of three alternative remediation strategies on the removal of VSCs:

1.- intensive oxygenation in the presence of a 3-mercaptopropyl-functionalized adsorbent (MPS);

2.- purging out with N2 the wine stored in reductive conditions; and,

3.- incubation with lees. The treatment with MPS consisted in the addition of 1 mM (of -SH groups) of the functionalized adsorbent to two different wines.

They were further saturated with air and, after three days, were centrifuged and analysed. The purge with N2 was applied to two different wines, which had been previously stored during 2 weeks at 50ºC under anoxia. They were purged at 100 mL/min during 60 min and analysed after the treatment. For lees treatment, three different types of lees were studied: fresh active lees, fresh inactive lees and commercial inactivated dry yeast. They were added (3,3 g/L) to wines with reductive off-odour, then they were incubated for 16 weeks at 25ºC, with weekly agitation. After the incubation, the wines were centrifugated to remove the lees. VSCs and redox potential of wines were analysed by GC-SCD (Ontañón et al., 2019) before and after each essay. Additionally, after the treatments an accelerated reductive aging was carried out (incubation at 50ºC under anoxia for 2 weeks) to assess the long-term effect of the treatments. Intensive oxygenation was very effective (-85% H2S BR after treatment and accelerated aging in both cases). Purge treatment was effective only in the short time, removing completely free H2S free and -70% BR-H2S. However, it was not effective in the long-term. The use of inactivated dry yeast was ineffective. The use of active or inactive fresh lees was effective only in some cases. In conclusion, oxidation with MPS provides the most effective treatment; purging was effective only in the short-term; and treatments with lees were not conclusive. Further studies to assess side effects of oxidation with MPS on wine characteristics should be carried out.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Sánchez-Gimeno

Diego Sánchez-Gimeno, Laboratory  of Aroma Analsis and Oenology (LAAE), Instituto Agroalimentario de Aragón –IA2-; Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, 50009. Zaragoza, Spain,Ignacio Ontañon, LAAE, –IA2- Universidad de Zaragoza Vicente Ferreira, LAAE, –IA2- Universidad de Zaragoza

Contact the author

Keywords

reduction, off-odours, vscs, lees, purge

Citation

Related articles…

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

THE ODORIFEROUS VOLATILE CHEMICALS BEHIND THE OXIDATIVE AROMA DEGRADATION OF SPANISH RED WINES

It is a well-established fact that premature oxidation is noxious for wine aromatic quality and longevity. Although some oxidation-related aroma molecules have been previously identified, there are not works carrying out systematic research about the changes in the profiles of odour-active volatiles during wine oxidation.

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite