Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Abstract

Sulfur-like off-odours are a problem caused by the presence of free forms of volatile sulphur compounds (VSCs). H2S is the most frequently found above its odour threshold (1-10 µg/L), followed by methanethiol (MeSH). Recent evidences showed that the usual treatments to eliminate VSCs from wine e.g.: addition of Cu salts or micro-oxygenation only delay the occurrence of reductive off-odours. (Vela et al., 2017, 2018) The present work aims to assess the effectiveness of three alternative remediation strategies on the removal of VSCs:

1.- intensive oxygenation in the presence of a 3-mercaptopropyl-functionalized adsorbent (MPS);

2.- purging out with N2 the wine stored in reductive conditions; and,

3.- incubation with lees. The treatment with MPS consisted in the addition of 1 mM (of -SH groups) of the functionalized adsorbent to two different wines.

They were further saturated with air and, after three days, were centrifuged and analysed. The purge with N2 was applied to two different wines, which had been previously stored during 2 weeks at 50ºC under anoxia. They were purged at 100 mL/min during 60 min and analysed after the treatment. For lees treatment, three different types of lees were studied: fresh active lees, fresh inactive lees and commercial inactivated dry yeast. They were added (3,3 g/L) to wines with reductive off-odour, then they were incubated for 16 weeks at 25ºC, with weekly agitation. After the incubation, the wines were centrifugated to remove the lees. VSCs and redox potential of wines were analysed by GC-SCD (Ontañón et al., 2019) before and after each essay. Additionally, after the treatments an accelerated reductive aging was carried out (incubation at 50ºC under anoxia for 2 weeks) to assess the long-term effect of the treatments. Intensive oxygenation was very effective (-85% H2S BR after treatment and accelerated aging in both cases). Purge treatment was effective only in the short time, removing completely free H2S free and -70% BR-H2S. However, it was not effective in the long-term. The use of inactivated dry yeast was ineffective. The use of active or inactive fresh lees was effective only in some cases. In conclusion, oxidation with MPS provides the most effective treatment; purging was effective only in the short-term; and treatments with lees were not conclusive. Further studies to assess side effects of oxidation with MPS on wine characteristics should be carried out.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Sánchez-Gimeno

Diego Sánchez-Gimeno, Laboratory  of Aroma Analsis and Oenology (LAAE), Instituto Agroalimentario de Aragón –IA2-; Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, 50009. Zaragoza, Spain,Ignacio Ontañon, LAAE, –IA2- Universidad de Zaragoza Vicente Ferreira, LAAE, –IA2- Universidad de Zaragoza

Contact the author

Keywords

reduction, off-odours, vscs, lees, purge

Citation

Related articles…

Application of remote and proximal sensors for precision vineyard management in Valpolicella

The integration of sensor systems in viticulture is significantly improving vineyard management by enabling faster, comprehensive crop data collection across the entire vineyard, supporting more informed viticultural decision-making, and as a result promoting sustainability.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Relationship between terroir and vegetative potential, productivity, yield and must composition of Vitis Vinífera L. Cvs. Cabernet Sauvignon under warm climate conditions

One cultivar could produce distinct wines with typical properties and qualities different depending on its cultivated and its mesoclimatic conditions.

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.