Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Abstract

Sulfur-like off-odours are a problem caused by the presence of free forms of volatile sulphur compounds (VSCs). H2S is the most frequently found above its odour threshold (1-10 µg/L), followed by methanethiol (MeSH). Recent evidences showed that the usual treatments to eliminate VSCs from wine e.g.: addition of Cu salts or micro-oxygenation only delay the occurrence of reductive off-odours. (Vela et al., 2017, 2018) The present work aims to assess the effectiveness of three alternative remediation strategies on the removal of VSCs:

1.- intensive oxygenation in the presence of a 3-mercaptopropyl-functionalized adsorbent (MPS);

2.- purging out with N2 the wine stored in reductive conditions; and,

3.- incubation with lees. The treatment with MPS consisted in the addition of 1 mM (of -SH groups) of the functionalized adsorbent to two different wines.

They were further saturated with air and, after three days, were centrifuged and analysed. The purge with N2 was applied to two different wines, which had been previously stored during 2 weeks at 50ºC under anoxia. They were purged at 100 mL/min during 60 min and analysed after the treatment. For lees treatment, three different types of lees were studied: fresh active lees, fresh inactive lees and commercial inactivated dry yeast. They were added (3,3 g/L) to wines with reductive off-odour, then they were incubated for 16 weeks at 25ºC, with weekly agitation. After the incubation, the wines were centrifugated to remove the lees. VSCs and redox potential of wines were analysed by GC-SCD (Ontañón et al., 2019) before and after each essay. Additionally, after the treatments an accelerated reductive aging was carried out (incubation at 50ºC under anoxia for 2 weeks) to assess the long-term effect of the treatments. Intensive oxygenation was very effective (-85% H2S BR after treatment and accelerated aging in both cases). Purge treatment was effective only in the short time, removing completely free H2S free and -70% BR-H2S. However, it was not effective in the long-term. The use of inactivated dry yeast was ineffective. The use of active or inactive fresh lees was effective only in some cases. In conclusion, oxidation with MPS provides the most effective treatment; purging was effective only in the short-term; and treatments with lees were not conclusive. Further studies to assess side effects of oxidation with MPS on wine characteristics should be carried out.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Sánchez-Gimeno

Diego Sánchez-Gimeno, Laboratory  of Aroma Analsis and Oenology (LAAE), Instituto Agroalimentario de Aragón –IA2-; Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, 50009. Zaragoza, Spain,Ignacio Ontañon, LAAE, –IA2- Universidad de Zaragoza Vicente Ferreira, LAAE, –IA2- Universidad de Zaragoza

Contact the author

Keywords

reduction, off-odours, vscs, lees, purge

Citation

Related articles…

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].

Screening of Italian red wines for quercetin precipitation risk index

Quercetin (Q), a phenolic compound released from grape skins during red wine maceration, has been identified as a source of instability in bottled wines, particularly Sangiovese, due to crystallisation. This phenomenon represents an economic challenge for producers and affects wine clarity and consumer perception.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.

Terroirs and legal protection

Le concept AOC permet, par une délimitation précise, la mise en valeur de terroirs particulièrement adaptés à la viticulture. Seuls les terroirs ainsi identifiés peuvent produire des vins portant le nom de l’AOC. Le nom de cette AOC ne peut être utilisé que pour des vins issus de terroirs compris dans l’aire d’appellation, sous peine de sanctions pénales. La délimitation ainsi opérée participe à la protection du nom de l’AOC. A l’inverse, le terroir délimité n’est pas protégé.