Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Evaluation of three alternative strategies for the long-term remediation of reductive off-odours in wines

Abstract

Sulfur-like off-odours are a problem caused by the presence of free forms of volatile sulphur compounds (VSCs). H2S is the most frequently found above its odour threshold (1-10 µg/L), followed by methanethiol (MeSH). Recent evidences showed that the usual treatments to eliminate VSCs from wine e.g.: addition of Cu salts or micro-oxygenation only delay the occurrence of reductive off-odours. (Vela et al., 2017, 2018) The present work aims to assess the effectiveness of three alternative remediation strategies on the removal of VSCs:

1.- intensive oxygenation in the presence of a 3-mercaptopropyl-functionalized adsorbent (MPS);

2.- purging out with N2 the wine stored in reductive conditions; and,

3.- incubation with lees. The treatment with MPS consisted in the addition of 1 mM (of -SH groups) of the functionalized adsorbent to two different wines.

They were further saturated with air and, after three days, were centrifuged and analysed. The purge with N2 was applied to two different wines, which had been previously stored during 2 weeks at 50ºC under anoxia. They were purged at 100 mL/min during 60 min and analysed after the treatment. For lees treatment, three different types of lees were studied: fresh active lees, fresh inactive lees and commercial inactivated dry yeast. They were added (3,3 g/L) to wines with reductive off-odour, then they were incubated for 16 weeks at 25ºC, with weekly agitation. After the incubation, the wines were centrifugated to remove the lees. VSCs and redox potential of wines were analysed by GC-SCD (Ontañón et al., 2019) before and after each essay. Additionally, after the treatments an accelerated reductive aging was carried out (incubation at 50ºC under anoxia for 2 weeks) to assess the long-term effect of the treatments. Intensive oxygenation was very effective (-85% H2S BR after treatment and accelerated aging in both cases). Purge treatment was effective only in the short time, removing completely free H2S free and -70% BR-H2S. However, it was not effective in the long-term. The use of inactivated dry yeast was ineffective. The use of active or inactive fresh lees was effective only in some cases. In conclusion, oxidation with MPS provides the most effective treatment; purging was effective only in the short-term; and treatments with lees were not conclusive. Further studies to assess side effects of oxidation with MPS on wine characteristics should be carried out.

DOI:

Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego Sánchez-Gimeno

Diego Sánchez-Gimeno, Laboratory  of Aroma Analsis and Oenology (LAAE), Instituto Agroalimentario de Aragón –IA2-; Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, 50009. Zaragoza, Spain,Ignacio Ontañon, LAAE, –IA2- Universidad de Zaragoza Vicente Ferreira, LAAE, –IA2- Universidad de Zaragoza

Contact the author

Keywords

reduction, off-odours, vscs, lees, purge

Citation

Related articles…

SENSORY IMPROVEMENT OF DEALCOHOLISED WINES

Interest and willing-ness to buy alcohol-free wines by customers is increasing for several years [1]. Due to the rising relevance of dealcoholised wines it is the objective of this study to contribute to a better understanding of the flavor variation among dealcoholised wines and to explore enological measures, how to improve final quality.
First a range of commercial, alcoholfree white wines were analysed by the holistic sensory method projective mapping, including a question for hedonic acceptance. Based on the combination of a non-target-HS-SPME-GC/MS analysis with sensory analysis we obtained a clustering of the wines into three groups.

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied.

Estimating grapevine water status: a combined analysis of hyperspectral image and 3d point clouds

Mild to moderate and timely water deficit is desirable in grape production to optimize fruit quality for winemaking. It is crucial to develop robust and rapid approaches to assess grapevine water stress for scheduling deficit irrigation. Hyperspectral imaging (HSI) has the potential to detect changes in leaf water status, but the robustness and accuracy are restricted in field applications.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

A phylogenomic study reveals the major dissemination routes of ‘Tempranillo Tinto’ in the Iberian Peninsula

‘Tempranillo Tinto’ is a black-berried Iberian cultivar that originated from a hybridization between cvs. ‘Benedicto’ and ‘Albillo Mayor’ [1]. Today, it is the third most widely grown wine grape cultivar worldwide with more than 200,000 hectares of vineyards mostly distributed along the Iberian Peninsula, where it is also known as ‘Cencibel’, ‘Tinta de Toro’, ‘Tinta Roriz’, and ‘Aragonez’, among other synonyms. Here, we quantified the intra-varietal genomic diversity in this cultivar through the study of 35 clones or ancient vines from seven different Iberian wine-making regions. A comparative analysis after Illumina whole-genome sequencing revealed the presence of 1,120 clonal single nucleotide variants (SNVs).