Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of the type of flavonol and the presence of mannoproteins in the copigmentation with malvidin 3-O-glucoside

Influence of the type of flavonol and the presence of mannoproteins in the copigmentation with malvidin 3-O-glucoside

Abstract

AIM: To study the copigmentation between different wine flavonols (myricetin, quercetin, kaempferol, isorhamnetin and syringetin 3-O-glucosides) and malvidin 3-O-glucoside to detect differences in the interactions due to the flavonol type. Considering the existing interactions of anthocyanins and flavonols in wines with mannoproteins1, copigmentation was also studied in the presence of 5 different mannoproteins.

METHODS: 36 model systems were built in wine-like solution in triplicate. One of them contained only the anthocyanin. 10 were anthocyanin-flavonol (AF) or anthocyanin-mannoprotein (AM) binary systems. 25 contained the anthocyanin, one type of flavonol and one type of mannoprotein (AFM). Concentrations used were 0.41mM for the anthocyanin and flavonol and 400 mg/L for the mannoprotein. UV-vis spectra were measured at days 1, 2, 5, 8 and 22, calculating then, CIELAB parameters and copigmentation indexes, such as CCI (% of colour due to copigmentation)2. HPLC-DAD-MSn analyses1 were performed at day 22 to study anthocyanin degradation and the possible and distinct formation of anthocyanin-derived pigments.

RESULTS: In AF binary systems, the occurrence of copigmentation was demonstrated from the CCI values (>23 in all model systems from day 1 to day 22). Copigmentation increased during the first 8 days and then tended to decrease until day 22. Isorhamnetin 3-O-glucoside appeared to be the best copigment (CCI 70) whereas kaempferol 3-O-glucoside caused the lowest CCI values. In AM binary systems, copigmentation was not observed and, for some mannoproteins, even an anticopigmentation effect was detected. In AFM ternary systems, the effect depended both on the flavonol and on the mannoprotein, pointing to different interactions probably related to structural differences. 

CONCLUSIONS

The magnitude of the copigmentation phenomenon between malvidin 3-O-glucoside and different flavonols depend on the structure of the flavonol and can be differently affected by the presence of different types of mannoproteins in the medium.

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristina Alcalde Eon

Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain,María de las Nieves FELIPE-JIMÉNEZ. Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain Ignacio GARCÍA-ESTÉVEZ. Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain María Teresa ESCRIBANO-BAILÓN. Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain

Contact the author

Keywords

anthocyanins, flavonols, copigmentation, mannoproteins, colour stability

Citation

Related articles…

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

Il piano regolatore delle citta’ del vino

Obiettivo generale di questo documenta è fornire un metodo di pianificazione che superi l’organizzazione delle aree rurali, ed in particolare vitate, finalizzata unicamente all’ot­timizzazione economico produttiva delle aziende, verso una pianificazione integrata degli spazi aperti.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

Relationship between terroir and acidity for the red wine grape cultivar Malbec N or Cot N (Vitis vinifera L.) in AOC “Cahors” and “Côtes du Frontonnais “

L’étude préliminaire, réalisée sur les principaux cépages de la région Midi-Pyrénées, a montré que le Cot N possédait des teneurs en acide tartrique dans les moûts et les vins plus élevées que celles des cépages Négrette N, Tannat N, Duras N et Fer Servadou N.