Macrowine 2021
IVES 9 IVES Conference Series 9 Influence of the type of flavonol and the presence of mannoproteins in the copigmentation with malvidin 3-O-glucoside

Influence of the type of flavonol and the presence of mannoproteins in the copigmentation with malvidin 3-O-glucoside

Abstract

AIM: To study the copigmentation between different wine flavonols (myricetin, quercetin, kaempferol, isorhamnetin and syringetin 3-O-glucosides) and malvidin 3-O-glucoside to detect differences in the interactions due to the flavonol type. Considering the existing interactions of anthocyanins and flavonols in wines with mannoproteins1, copigmentation was also studied in the presence of 5 different mannoproteins.

METHODS: 36 model systems were built in wine-like solution in triplicate. One of them contained only the anthocyanin. 10 were anthocyanin-flavonol (AF) or anthocyanin-mannoprotein (AM) binary systems. 25 contained the anthocyanin, one type of flavonol and one type of mannoprotein (AFM). Concentrations used were 0.41mM for the anthocyanin and flavonol and 400 mg/L for the mannoprotein. UV-vis spectra were measured at days 1, 2, 5, 8 and 22, calculating then, CIELAB parameters and copigmentation indexes, such as CCI (% of colour due to copigmentation)2. HPLC-DAD-MSn analyses1 were performed at day 22 to study anthocyanin degradation and the possible and distinct formation of anthocyanin-derived pigments.

RESULTS: In AF binary systems, the occurrence of copigmentation was demonstrated from the CCI values (>23 in all model systems from day 1 to day 22). Copigmentation increased during the first 8 days and then tended to decrease until day 22. Isorhamnetin 3-O-glucoside appeared to be the best copigment (CCI 70) whereas kaempferol 3-O-glucoside caused the lowest CCI values. In AM binary systems, copigmentation was not observed and, for some mannoproteins, even an anticopigmentation effect was detected. In AFM ternary systems, the effect depended both on the flavonol and on the mannoprotein, pointing to different interactions probably related to structural differences. 

CONCLUSIONS

The magnitude of the copigmentation phenomenon between malvidin 3-O-glucoside and different flavonols depend on the structure of the flavonol and can be differently affected by the presence of different types of mannoproteins in the medium.

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cristina Alcalde Eon

Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain,María de las Nieves FELIPE-JIMÉNEZ. Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain Ignacio GARCÍA-ESTÉVEZ. Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain María Teresa ESCRIBANO-BAILÓN. Grupo de Investigación en Polifenoles, University of Salamanca, Salamanca, Spain

Contact the author

Keywords

anthocyanins, flavonols, copigmentation, mannoproteins, colour stability

Citation

Related articles…

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1).

Unravel the underlying mechanisms of delaying ripening techniques in grapevine

In a scenario of changing climate conditions, grapevine is significantly affected at multiple levels. Advancements in phenology and berry ripening, however, are the major dynamics of the generalized increase in average temperature and evaporative demand, negatively affecting berry quality and productivity. The aim of this work was to unravel the underlying mechanisms of bunch-zone auxin application (NAA; 1-Naphthaleneacetic acid) and source-limiting canopy management approaches in delaying berry ripening. In randomized block design experiments, control vines were compared to vines treated with NAA, subjected to apical-to-bunch defoliation or antitranspirant application (n=10-to-42 plants per treatment).

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

Marketing terroir wines

The markets for quality wine are becoming more competitive as newer producers emerge and traditional producers improve their quality. The concept of terroir is one way to differenzi­ate wines in a competitive market and to enhance producer income.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.