Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Abstract

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines (1), implying more important sulfur dioxide doses to protect wines. This is incompatible with the reduction of inputs. Fumaric acid (FA) is known for its high acidifying power and its bacteriostatic properties (2) and glutathione (GSH) for its antioxidant power (3). FA combined with GSH could solve acidity problems and reduction of sulfur dioxide in wine. The study aims to evaluate the impact of FA and/or GSH addition at the end of alcoholic fermentation (AF) and just before bottling on wine quality compared to sulfite free, sulfited wine control and tartaric acid (TA) acidified wine. This work only presents the impact of addition of FA and GSH at the end of AF on Cabernet Sauvignon wine. Micro-winemakings were conducted with high mature Cabernet Sauvignon grapes. 9kg of grapes were vatted in each tank with 60mg/L sulfur dioxide. Duplicated vats were treated with TA (2.5g/L), FA (2.5g/L tartaric acid eq.), with 50mg/L GSH, with FA (2.5g/L tartaric acid eq.) + GSH (50mg/L) and three tanks were untreated (controls). At bottling, control wines were mixed and half part was added with sulfur dioxide (80mg/L). Oenological parameters, color, phenolic compounds, antioxidant capacities were evaluated at the end of AF, the end of malolactic fermentation (MLF) and 3 months after bottling. A ranking test and sensory profiles were realized on three-months wines. TA and FA addition at end of AF induced a similar decrease of pH. Total acidity was slightly higher in tanks where FA was added. In these same tanks, the MLFs were stopped when they had already started or did not start: MLFs were delayed for 2-3 months. Wines treated with FA produced 100% more lactic acid than control and TA-acidified wines. Color differences were observed in three-months wines after AF addition. The sulfited control was the lightest with more yellow hue and the wines with added FA were the darkest ones. Total phenolic compounds (total phenolic index and Folin-Ciocalteu analysis) were slightly lower in wines treated with FA and/or GSH. Total tannins were not affected by treatments unlike total anthocyanins. Their content in wine treated with FA without GSH was the lowest. In contrast, addition of GSH had a protective effect on total free anthocyanins. Antioxidant capacities were similar in all wines. Concerning organoleptic quality of wines, the ranking test on overall quality did not show differences but FA acidified wine was the best ranked. Sensory profils highlighted that sulfited control was less intense with more yellow hue. Acidified wines, especially with TA, and GSH added wine were slightly more aromatic than control wines. Addition of FA at the end of AF (2.5g/L tartaric acid eq.) allowed to delay MLF and produced 100% more lactic acid than control wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Payan

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany,Anne-laure GANCEL, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

fumaric acid, glutathione, color, phenolic compounds, organoleptic quality

Citation

Related articles…

Fructose implication in the Sotolon formation in fortified wines: preliminary results

Sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) is a naturally occurring odorant compound with a strong caramel/spice-like scent, present in many foodstuffs. Its positive contribution for the aroma of different fortified wines such as Madeira, Port and Sherry is recognized. In contrast, it is also known to be responsible for the off-flavor character of prematurely aged dry white wines. The formation mechanisms of sotolon in wine are still not well elucidated, particularly in Madeira wines, which are submitted to thermal processing during its traditional ageing. The sotolon formation in these wines has been related to sugar degradation mechanisms, particularly from fructose [1].

Effect of “Terroir” on quanti-qualitative paramethers of “vino nobile di Montepulciano”

In this last ten years period, there has been many integrated and interdisciplinary studies to determine the aptitude of different zones to viticulture (Lulli et al., 1989 ; Costantini, 1992 ; Fregoni et al., 1992). The researches needed some différent knowledges about environment characteristics (soil, climate), ecology, vineyard management, vine genetic, winemaking and sensory analysis. The interaction of all these knowledge produced the assessment about the environmental vocation (Scienza et al., 1992). By means of this metodology, the “viticultural vocation” joined the word “zoning”, that is the territory parting for its ecopedological and geographical characteristics in relation to adaptative answer of winegrape (Morlat, 1989).

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

Varieties and rootstocks: an important mean for adaptation to terroir

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.