Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Abstract

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines (1), implying more important sulfur dioxide doses to protect wines. This is incompatible with the reduction of inputs. Fumaric acid (FA) is known for its high acidifying power and its bacteriostatic properties (2) and glutathione (GSH) for its antioxidant power (3). FA combined with GSH could solve acidity problems and reduction of sulfur dioxide in wine. The study aims to evaluate the impact of FA and/or GSH addition at the end of alcoholic fermentation (AF) and just before bottling on wine quality compared to sulfite free, sulfited wine control and tartaric acid (TA) acidified wine. This work only presents the impact of addition of FA and GSH at the end of AF on Cabernet Sauvignon wine. Micro-winemakings were conducted with high mature Cabernet Sauvignon grapes. 9kg of grapes were vatted in each tank with 60mg/L sulfur dioxide. Duplicated vats were treated with TA (2.5g/L), FA (2.5g/L tartaric acid eq.), with 50mg/L GSH, with FA (2.5g/L tartaric acid eq.) + GSH (50mg/L) and three tanks were untreated (controls). At bottling, control wines were mixed and half part was added with sulfur dioxide (80mg/L). Oenological parameters, color, phenolic compounds, antioxidant capacities were evaluated at the end of AF, the end of malolactic fermentation (MLF) and 3 months after bottling. A ranking test and sensory profiles were realized on three-months wines. TA and FA addition at end of AF induced a similar decrease of pH. Total acidity was slightly higher in tanks where FA was added. In these same tanks, the MLFs were stopped when they had already started or did not start: MLFs were delayed for 2-3 months. Wines treated with FA produced 100% more lactic acid than control and TA-acidified wines. Color differences were observed in three-months wines after AF addition. The sulfited control was the lightest with more yellow hue and the wines with added FA were the darkest ones. Total phenolic compounds (total phenolic index and Folin-Ciocalteu analysis) were slightly lower in wines treated with FA and/or GSH. Total tannins were not affected by treatments unlike total anthocyanins. Their content in wine treated with FA without GSH was the lowest. In contrast, addition of GSH had a protective effect on total free anthocyanins. Antioxidant capacities were similar in all wines. Concerning organoleptic quality of wines, the ranking test on overall quality did not show differences but FA acidified wine was the best ranked. Sensory profils highlighted that sulfited control was less intense with more yellow hue. Acidified wines, especially with TA, and GSH added wine were slightly more aromatic than control wines. Addition of FA at the end of AF (2.5g/L tartaric acid eq.) allowed to delay MLF and produced 100% more lactic acid than control wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Payan

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany,Anne-laure GANCEL, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

fumaric acid, glutathione, color, phenolic compounds, organoleptic quality

Citation

Related articles…

Estimating grapevine crop coefficients at high-resolution using open-source satellite data

Climate change results in increasing water stress due to co-effects of rising evapotranspiration (ET) and decreased precipitation over the past 65 years (Spinoni et al. 2019).

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

Chemical and sensory evaluation of Bordeaux wines (Cabernet sauvignon and Merlot) and correlation with wine age

This study was carried out on 24 vintages of Cabernet sauvignon and on 7 vintages of Merlot produced by two different Bordeaux growing areas. Proanthocyanidin monomers and oligomers, and several parameters of the proanthocyanidin fraction were analytically assessed.

Stomatal restrictions to photosynthesis in grapevine cultivars grown in a semiarid environment

Diurnal changes in the leaves of field-grown grapevine (Vitis vinifera L.) cultivars Syrah and Tempranillo were followed over summer 2009 with respect to gas exchanges. Net photosynthetic rate (AN) of both cultivars rapidly increased in the morning, decreasing slowly until the late afternoon, when reached the lowest values.