Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Impact of addition of fumaric acid and glutathion at the end of alcoholic fermentation on Cabernet-Sauvignon wine

Abstract

Viticulture and oenology face two major challenges today, climate change and the reduction in the use of inputs. Climate change induces low acidity and microbiologically less stable wines (1), implying more important sulfur dioxide doses to protect wines. This is incompatible with the reduction of inputs. Fumaric acid (FA) is known for its high acidifying power and its bacteriostatic properties (2) and glutathione (GSH) for its antioxidant power (3). FA combined with GSH could solve acidity problems and reduction of sulfur dioxide in wine. The study aims to evaluate the impact of FA and/or GSH addition at the end of alcoholic fermentation (AF) and just before bottling on wine quality compared to sulfite free, sulfited wine control and tartaric acid (TA) acidified wine. This work only presents the impact of addition of FA and GSH at the end of AF on Cabernet Sauvignon wine. Micro-winemakings were conducted with high mature Cabernet Sauvignon grapes. 9kg of grapes were vatted in each tank with 60mg/L sulfur dioxide. Duplicated vats were treated with TA (2.5g/L), FA (2.5g/L tartaric acid eq.), with 50mg/L GSH, with FA (2.5g/L tartaric acid eq.) + GSH (50mg/L) and three tanks were untreated (controls). At bottling, control wines were mixed and half part was added with sulfur dioxide (80mg/L). Oenological parameters, color, phenolic compounds, antioxidant capacities were evaluated at the end of AF, the end of malolactic fermentation (MLF) and 3 months after bottling. A ranking test and sensory profiles were realized on three-months wines. TA and FA addition at end of AF induced a similar decrease of pH. Total acidity was slightly higher in tanks where FA was added. In these same tanks, the MLFs were stopped when they had already started or did not start: MLFs were delayed for 2-3 months. Wines treated with FA produced 100% more lactic acid than control and TA-acidified wines. Color differences were observed in three-months wines after AF addition. The sulfited control was the lightest with more yellow hue and the wines with added FA were the darkest ones. Total phenolic compounds (total phenolic index and Folin-Ciocalteu analysis) were slightly lower in wines treated with FA and/or GSH. Total tannins were not affected by treatments unlike total anthocyanins. Their content in wine treated with FA without GSH was the lowest. In contrast, addition of GSH had a protective effect on total free anthocyanins. Antioxidant capacities were similar in all wines. Concerning organoleptic quality of wines, the ranking test on overall quality did not show differences but FA acidified wine was the best ranked. Sensory profils highlighted that sulfited control was less intense with more yellow hue. Acidified wines, especially with TA, and GSH added wine were slightly more aromatic than control wines. Addition of FA at the end of AF (2.5g/L tartaric acid eq.) allowed to delay MLF and produced 100% more lactic acid than control wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Claire Payan

Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France and Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany,Anne-laure GANCEL, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France  Monika CHRISTMANN, Hochschule Geisenheim University von Lade Straße, 65366 Geisenheim, Germany  Pierre-Louis TEISSEDRE, Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, F33882 Villenave d’Ornon, France

Contact the author

Keywords

fumaric acid, glutathione, color, phenolic compounds, organoleptic quality

Citation

Related articles…

Impact of sulfur compounds to the antioxidant stability of white wines

The chemical mechanisms involved in oxidation/reduction potential of wine during winemaking and aging are affecting its color, aroma and taste. Chemical oxidation is one of the major causes of development of off-flavors during ageing1. Thus, the chemical changes in wine during storage should be controlled to ensure the sensory quality of the product and avoid consumer rejection that will compromise the economic value of the product. The 1-hydroxyethyl radical has been recognized as the key radical intermediate in the oxidative reactions in wine2. Based on the kinetic study of POBN-1-hydroxyethyl spin adduct formation in wines initiated via the Fenton reaction, a novel tool was recently developed in our laboratory to quantify the resistance of wines against oxidation3.

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.

NADES extraction of anthocyanins derivatives from grape pomace

Grape pomace is one of the main by-products generated after pressing in wine-making. It’s valorization through the extraction of bioactive compounds is the answer for the development of sustainable processes. Nevertheless, in the recovery of anthocyanins derivatives, the extraction stage continues to be a limiting step. The nature of the sample and the type of solvent determine the efficiency of the process

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

The collection of micro-climatic information through a mobile robot

Temperature fluctuations and, in general, climatic conditions can significantly affect the chemical composition of grapes and, in turn, the taste and aromas of wine.