Macrowine 2021
IVES 9 IVES Conference Series 9 Oxygen consumption and changes in chemical composition of young wines

Oxygen consumption and changes in chemical composition of young wines

Abstract

AIM: The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life. This work evaluates the oxygen consumption kinetics of 27 commercial white, rosé and red wines from the Spanish wine-growing region of “Castilla y León” and the effect on its composition.

METHODS: Wines were saturated with oxygen and were monitored its oxygen consumption kinetics. Phenolic and volatile compounds (1,2) were evaluated in the initial wines and after 3 months of permanence in the bottle after undergoing a controlled oxygen saturation.

RESULTS: The oxygen consumption kinetics allowed to establish the differentiating characteristics of each type of wine. The parameters of the curve related to the time required to consume oxygen, the oxygen level at half-time, the area under the curve or the time to reach half-area, allowed to differentiate white wines from rosé and red wines. The variables that allow the differentiation of the 3 types of wines studied were the time to consume 10% of the available oxygen, and the time to consume between 10-90% of the available oxygen.

In general, the red wines showed a greater avidity for oxygen than the white wines. However, it is interesting to note that some white wines presented a consumption kinetics similar to the red ones. In the rosé wines, consumption kinetics were found closer to that of white or red wines, mainly depending on their phenolic characteristics.

The controlled oxygen saturation of wines produced a high decrease of ethyl esters and alcohol acetates in all wines (40-65%) that reduced the fruity and floral notes of the wines. In addition, an increase of Strecker aldehydes was observed in most of the wines (20-28%), compounds that can provoke the appearance of negative notes, such as honey, malty aromas and/or ripe fruit.

Slight decrease in total polyphenols was found in the white and rosé wines, while no significant differences were found in the red ones. On the other hand, in the rosé and red wines, a loss of total anthocyanins was observed together with an increase in polymeric anthocyanins, which produced an increase in colour intensity and tonality.

Conclusions

The oxygen saturation of wines induced a loss of volatile compounds associated to fruity and floral notes and an increase of aldehydes responsible of oxidative notes. In addition, an increase of polymeric anthocyanins was observed in rosé and red wines, which indicates an aging acceleration.

Acknowledgment 

This research was funded by the Junta de Castilla y León thought a collaboration agreement between the ITACyL, the UVa and the UVa Science Park Foundation

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Silvia Pérez-Magariño

Agrarian Technological Institute of Castilla and León (ITACyL), Ctra Burgos Km 119, 47071 Valladolid, Spain,Marta BUENO-HERRERA, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Ctra Burgos Km 119, 47071 Valladolid, Spain Ana MARTINEZ-GIL Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid (UVa), Avda. Madrid, 50, 34004 Palencia, Spain Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid (UVa), Avda. Madrid, 50, 34004 Palencia, Spain Maria Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid (UVa), Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

oxygen consumption kinetics, phenols, volatiles, wines

Citation

Related articles…

Approaches for estimating the age of old vineyards in Campo de Borja

Determining the age of a vineyard is essential for understanding its influence on wine quality and characteristics.

SO2 consumption in white wine oxidation: approaches to low input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in maintaining wine quality during its shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Ultrastructural and chemical analysis of berry skin from two Champagne grapes varieties and in relation to Botrytis cinerea susceptibility

Botrytis cinerea is a necrotrophic pathogen that causes one of the most serious diseases of the grapevine (Vitis vinifera), grey mold or Botrytis bunch rot. In Champagne, the Botrytis cinerea disease leads to considerable economic losses for winemakers and wines exhibit organoleptic defaults.

HEAT BERRY : Sensitivity of berries ripening to higher temperature and impact on phenolic compounds in wine

The grapevine is an important economical crop that is very sensitive to climate changes and microclimate. The observations made during the last decades at a vineyard scale all concur to show the impact of climate change on vine physiology, resulting in accelerated phenology and earlier harvest (Jones and Davis 2000). It is well-known that berry content is affected by the ambient temperature. While the first experiences were primarily conducted on the impact of temperature on anthocyanin accumulation in the grape, few studies have focused on others component of phenolic metabolism, such as tannins.

«Observatoire Mourvèdre»: statistical modelling of quality for Cv. Mourvèdre

Vine cultivar Mourvèdre is present all around the Mediterranean area and is interesting for its tannins and the specificity of its aromas.