Macrowine 2021
IVES 9 IVES Conference Series 9 Oxygen consumption and changes in chemical composition of young wines

Oxygen consumption and changes in chemical composition of young wines

Abstract

AIM: The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life. This work evaluates the oxygen consumption kinetics of 27 commercial white, rosé and red wines from the Spanish wine-growing region of “Castilla y León” and the effect on its composition.

METHODS: Wines were saturated with oxygen and were monitored its oxygen consumption kinetics. Phenolic and volatile compounds (1,2) were evaluated in the initial wines and after 3 months of permanence in the bottle after undergoing a controlled oxygen saturation.

RESULTS: The oxygen consumption kinetics allowed to establish the differentiating characteristics of each type of wine. The parameters of the curve related to the time required to consume oxygen, the oxygen level at half-time, the area under the curve or the time to reach half-area, allowed to differentiate white wines from rosé and red wines. The variables that allow the differentiation of the 3 types of wines studied were the time to consume 10% of the available oxygen, and the time to consume between 10-90% of the available oxygen.

In general, the red wines showed a greater avidity for oxygen than the white wines. However, it is interesting to note that some white wines presented a consumption kinetics similar to the red ones. In the rosé wines, consumption kinetics were found closer to that of white or red wines, mainly depending on their phenolic characteristics.

The controlled oxygen saturation of wines produced a high decrease of ethyl esters and alcohol acetates in all wines (40-65%) that reduced the fruity and floral notes of the wines. In addition, an increase of Strecker aldehydes was observed in most of the wines (20-28%), compounds that can provoke the appearance of negative notes, such as honey, malty aromas and/or ripe fruit.

Slight decrease in total polyphenols was found in the white and rosé wines, while no significant differences were found in the red ones. On the other hand, in the rosé and red wines, a loss of total anthocyanins was observed together with an increase in polymeric anthocyanins, which produced an increase in colour intensity and tonality.

Conclusions

The oxygen saturation of wines induced a loss of volatile compounds associated to fruity and floral notes and an increase of aldehydes responsible of oxidative notes. In addition, an increase of polymeric anthocyanins was observed in rosé and red wines, which indicates an aging acceleration.

Acknowledgment 

This research was funded by the Junta de Castilla y León thought a collaboration agreement between the ITACyL, the UVa and the UVa Science Park Foundation

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Silvia Pérez-Magariño

Agrarian Technological Institute of Castilla and León (ITACyL), Ctra Burgos Km 119, 47071 Valladolid, Spain,Marta BUENO-HERRERA, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Ctra Burgos Km 119, 47071 Valladolid, Spain Ana MARTINEZ-GIL Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid (UVa), Avda. Madrid, 50, 34004 Palencia, Spain Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid (UVa), Avda. Madrid, 50, 34004 Palencia, Spain Maria Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid (UVa), Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

oxygen consumption kinetics, phenols, volatiles, wines

Citation

Related articles…

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.

Proposta per un parco produttivo agrovitivinicolo dei “colli piacentini”

Le Dipartimento di Progettazione dell ‘Architettura del Politecnico di Milano et l’Istituto di Viticoltura della Facoltà d’Agraria di Piacenza dell’Università Cattolica del Sacra Cuore, ont elaboré une proposition pour réaliser, dans l’aire de colline de la province de Piacenza, un Parco Produttivo Agrovitivinicolo.

Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

A two-bite compression test was applied on Cabernet franc grapes during two harvest seasons. The evolution of the texture parameters from véraison to harvest was studied and a new mechanical ripeness notion was introduced.

Untangling belowground response of grapevines to cover crop competition

Cover crops are planted in vineyards for multiple benefits including soil conservation, weed management, regulation of grapevine vegetative growth

Determination of the maturity status of white grape berries (Vitis vinifera L. cv Chenin) through physical measurements

La véraison, stade intermédiaire du développement de la baie de raisin, correspond au début de la maturation. Aux modifications de coloration de la pellicule sont associées une perte de fermeté, une diminution de l’acidité et une augmentation des teneurs en sucres et pigments ainsi que du volume de la baie. Le stade de véraison des cépages blancs reste difficile à apprécier visuellement. Son évaluation par palpation est subjective et donc sujette à caution.