Macrowine 2021
IVES 9 IVES Conference Series 9 Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

Abstract

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of innovative process to ensure microbial stabilization is a relevant topic for the industry. UV-C process is a non-thermal technique widely used for food preservation. In this study, we evaluated the relative sensitivity to UV-C of various wine related yeast species. A first approach was conducted using a drop-platted system. 147 strains distributed amongst fourteen yeast species related to wine environment were plated on Petri dishes (with 3 different drop densities) and exposed to six increasing UV-C doses. An important variability in UV-C response was observed at the interspecific level. Cellar resident species, which are mainly associated with wine spoilage, expressed higher sensitivity to UV-C than vineyard resident species. A focus on B. bruxellensis species with 104 screened strains highlighted an important effect of the UV-C, with intra-specific variation. The impact of this intra-specific variation of UV-C sensitivity on wine treatment efficiency was then studied. Six B. bruxellensis strains(including two sulphites resistant strains) from three different genetic groups were separately inoculated in red wine Those inoculated wines were then treated in our home-made UV-C pilot which allows the continuous treatment of liquids at 200 L.h-1. 4968 J.L-1 were sufficient to achieve 4.70 and 5.17 log10 reduction for both sulphites resistant strains, resulting in populations lower than 1 CFU.mL-1 after UV-C treatment. 6624 J.L-1 were required to achieve the same level of population (<1CFU.mL-1) for 3 other strains. This treatment was not sufficient to achieve the same result only for one strain. These results highlight the potential of UV-C utilisation against wine yeast spoiler at cellar scale even in highly absorbent wine (α254 = 31.6 cm-1). They also show that intraspecific variability (in addition to the already known interspecific variability) may have an effect on the required doses for the microbiological stabilization of wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Etienne Pilard

PhD student at ISVV,Jules HARROUARD PhD student at ISVV Warren ALBERTIN assistant professor at ISVV Cécile MIOT-SERTIER technician at ISVV Remy GHIDOSSI professor at ISVV

Contact the author

Keywords

UV-C treatment ; Wine shelf-life ; Brettanomyces bruxellensis

Citation

Related articles…

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Ripening of Vitis vinifera grapes varieties in São Joaquim, a new wine growing region, Southern Brazil

This report has investigated the ripening characteristics of Vitis vinifera grapes Cabernet Franc, Merlot, Sangiovese and Syrah in two consecutive vintages (2006 and 2007), in order to evaluate the adaptation from these recently varieties planted in São Joaquim town, Santa Catarina State, Brazil.

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis.