Macrowine 2021
IVES 9 IVES Conference Series 9 Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

Abstract

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of innovative process to ensure microbial stabilization is a relevant topic for the industry. UV-C process is a non-thermal technique widely used for food preservation. In this study, we evaluated the relative sensitivity to UV-C of various wine related yeast species. A first approach was conducted using a drop-platted system. 147 strains distributed amongst fourteen yeast species related to wine environment were plated on Petri dishes (with 3 different drop densities) and exposed to six increasing UV-C doses. An important variability in UV-C response was observed at the interspecific level. Cellar resident species, which are mainly associated with wine spoilage, expressed higher sensitivity to UV-C than vineyard resident species. A focus on B. bruxellensis species with 104 screened strains highlighted an important effect of the UV-C, with intra-specific variation. The impact of this intra-specific variation of UV-C sensitivity on wine treatment efficiency was then studied. Six B. bruxellensis strains(including two sulphites resistant strains) from three different genetic groups were separately inoculated in red wine Those inoculated wines were then treated in our home-made UV-C pilot which allows the continuous treatment of liquids at 200 L.h-1. 4968 J.L-1 were sufficient to achieve 4.70 and 5.17 log10 reduction for both sulphites resistant strains, resulting in populations lower than 1 CFU.mL-1 after UV-C treatment. 6624 J.L-1 were required to achieve the same level of population (<1CFU.mL-1) for 3 other strains. This treatment was not sufficient to achieve the same result only for one strain. These results highlight the potential of UV-C utilisation against wine yeast spoiler at cellar scale even in highly absorbent wine (α254 = 31.6 cm-1). They also show that intraspecific variability (in addition to the already known interspecific variability) may have an effect on the required doses for the microbiological stabilization of wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Etienne Pilard

PhD student at ISVV,Jules HARROUARD PhD student at ISVV Warren ALBERTIN assistant professor at ISVV Cécile MIOT-SERTIER technician at ISVV Remy GHIDOSSI professor at ISVV

Contact the author

Keywords

UV-C treatment ; Wine shelf-life ; Brettanomyces bruxellensis

Citation

Related articles…

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Natural variability and vine-growers behaviour

Le vigneron est confronté à une variabilité naturelle omniprésente, liée au millésime et aux facteurs pédoclimatiques. Depuis 10 ans, en Champagne, la relation qu’entretient le vigneron avec l’espace a évolué. Les exemples d’entreprises collectives à vocation territoriale se sont multipliés : gestion de l’hydraulique viticole, maillages de groupements de conseil viticole (Magister), sites en confusion sexuelle, réseau maturation, analyses de sols par secteur, …

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.

Vine field monitoring using high resolution remote sensing images: segmentation and characterization of rows of vines

A new framework for the segmentation and characterization of row crops on remote sensing images has been developed and validated for vineyard monitoring. This framework operates on any high-resolution remote sensing images since it is mainly based on geometric information. It aims at obtaining maps describing the variation of a vegetation index such as NDVI along each row of a parcel.