Macrowine 2021
IVES 9 IVES Conference Series 9 Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

Abstract

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of innovative process to ensure microbial stabilization is a relevant topic for the industry. UV-C process is a non-thermal technique widely used for food preservation. In this study, we evaluated the relative sensitivity to UV-C of various wine related yeast species. A first approach was conducted using a drop-platted system. 147 strains distributed amongst fourteen yeast species related to wine environment were plated on Petri dishes (with 3 different drop densities) and exposed to six increasing UV-C doses. An important variability in UV-C response was observed at the interspecific level. Cellar resident species, which are mainly associated with wine spoilage, expressed higher sensitivity to UV-C than vineyard resident species. A focus on B. bruxellensis species with 104 screened strains highlighted an important effect of the UV-C, with intra-specific variation. The impact of this intra-specific variation of UV-C sensitivity on wine treatment efficiency was then studied. Six B. bruxellensis strains(including two sulphites resistant strains) from three different genetic groups were separately inoculated in red wine Those inoculated wines were then treated in our home-made UV-C pilot which allows the continuous treatment of liquids at 200 L.h-1. 4968 J.L-1 were sufficient to achieve 4.70 and 5.17 log10 reduction for both sulphites resistant strains, resulting in populations lower than 1 CFU.mL-1 after UV-C treatment. 6624 J.L-1 were required to achieve the same level of population (<1CFU.mL-1) for 3 other strains. This treatment was not sufficient to achieve the same result only for one strain. These results highlight the potential of UV-C utilisation against wine yeast spoiler at cellar scale even in highly absorbent wine (α254 = 31.6 cm-1). They also show that intraspecific variability (in addition to the already known interspecific variability) may have an effect on the required doses for the microbiological stabilization of wines.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Etienne Pilard

PhD student at ISVV,Jules HARROUARD PhD student at ISVV Warren ALBERTIN assistant professor at ISVV Cécile MIOT-SERTIER technician at ISVV Remy GHIDOSSI professor at ISVV

Contact the author

Keywords

UV-C treatment ; Wine shelf-life ; Brettanomyces bruxellensis

Citation

Related articles…

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.